
#sf21veu

Chasing application

performance with Wireshark

Matthias Kaiser
ExperTeach GmbH,

Germany

Analyzing Database Applications with Wireshark

#sf21veu

I am Matthias Kaiser
I am here because I love packet analysis with Wireshark and I

love to present

You can find me at Twitter: @wiresharky

You can contact me via Email: matthias.kaiser@experteach.de

Hello!

#sf21veu
About Myself

● Sniffer University Instructor at Network General /NAI

● Freelancer with own analysis courses

● Trainer and Consultant at ExperTeach
● Wireshark Training and more

● Consulting Services for Packet Analysis

● Motto:
● „Every trace hides a story. Uncover and tell it.“

#sf21veu
Files and Downloads

● Presentation covers Real-Life Cases

● Trace Files and Wireshark Profiles:
● https://tinyurl.com/8nmc59c2

● Trace Files have been anonymized and
sanitized with TraceWrangler, © by Jasper
Bongertz

https://tinyurl.com/8nmc59c2

#sf21veu
Agenda

● Database applications

● Before we start…

● Sample Database Flow

● Case Study 1

● Case Study 3

● Application metrics for Wireshark

● Lessons learned

● Q&A

#sf21veu
Database Applications

● Applications drive processes …. Everywhere

● Database applications are all over the place.
● E-Commerce

● ERP, like Warehousing or Finance and HR

● Automation

● …..

● All applications will be IP-based

● Software Defined Networking
● Controllers will tell servers and network, what to do.

● So, we better understand, how applications work
… in order to analyze them with Wireshark

#sf21veu
Before we start … looking at packets

Have a plan
● Set your goals for the analysis.

● Describe your problem.

● Find out who is affected?
● Locations, Users, entire PCs, just applications

● Check the severity of your problem

● Identify the application(s)

● Find out when the problem occurs
● Permanent

● Sporadic / intermittent

● Do not just capture some traffic!

● Do not just look at trace files!

● And please … stop guessing!

#sf21veu
Before we start… II

Capture
● What are the traffic flows for your application?
● Capture Location: Where do I see interesting traffic?
● Define the user activity to be analysed.

● Permanent problem: Pick one typical action
● Intermitting problem: Long-Term analysis

Analyze
● Prepare your Wireshark (Profiles)
● Filter your trace file

● IP addresses, Ports

● Identify traffic for User actions
● Know the key metrics for the application?

And then
● Do the analysis

#sf21veu
Sample Database Flow

● Front end Process

○ HTTP(S) or specific TCP

● Back end Process

○ Many Requests - Responses

(Application Turns)

○ Small amount of data

● Back End sensitive to

○ Round Trip Time

○ Number of Turns

○ Application Response Time of

Database Server

○ Delays at App-Server

#sf21veu
Traffic Flows and Client Server Architecture

● Client-Server architecture
○ Fat Clients

○ Terminal Server

○ Virtual Clients (VDI)

○ Cloud environment

● Traffic flows
● Client – Servers – DB-Srv

● Which Users are affected?

● Capture location
○ Client Session

○ Application

#sf21veu

Case Study 1

#sf21veuReal-Life Case #1

● Case: Weighing process of palettes (steel)

● Problem: High transaction times for

database transaction Permanent

● User activity: Weighing process (repeatable)

● Trace Files: 1-Site1-before.pcapng

1-Site2-reference.pcapng

● Wireshark Profile: App-Analysis-I

● Suspect: Network

● Questions: Where is the problem?

#sf21veu

Real-Life Case #1 – network

map

● Network map for

Case #1

● Traces taken at App-

Servers.

● Front-End and Back-

End Flows visible

#sf21veuReal-Life Case #1 - Analysis

● Front End - Site 1:
○ Transaction Time: 40.6 s

○ High ACK-Times at App-Srv:

app. 150 - 200 ms

○ TCP Retransmissions

● Front End – Site 2:

Reference Site
○ Transaction Time: 15.2 s

○ High ACK-Times at App-Srv:

app. 100 - 150 ms

○ TCP Retransmissions

#sf21veuReal-Life Case #1 - Analysis

● Filter on just application

data
○ tcp.len > 1

○ Sort by Delta Time

○ Large Delta times can be

easily spotted.

● Sort by High Delta Times
○ From App-SRV:

■ 10 * High Delta Times

■ Total: 32.6 seconds

○ From Database-SRV:

■ 2 * High SRT

■ Total: 4.55 seconds

#sf21veuReal-Life Case #1 - Analysis

● Comparing Site 1 to Site 2

#sf21veu
Real-Life Case #1 – Solution

● Results from the analysis
○ App-Server seems to take many long breaks!

○ App-Server shows high ACK time.

○ Also a few retransmissions at both sites.

● Next steps
○ Check App-Server health!

○ Check App-Server application!

○ Take care of retransmissions later

#sf21veu
Real-Life Case #1 - Solution

● What we found on the „Application Server“:

● Application:

○ MS-Access „database“ with 1.2 GBytes in size.

○ Had not been reorganized for months

● Machine itself:

○ Just 256 MBytes of RAM, high level of disk swapping

○ Machine was heavily overloaded (corresponding with high RTT)

● Fix

○ Reorganize the DB on App-Server 1-Site1-after.pcapng

○ Add more RAM to the machine  scheduled for later

#sf21veu
Real-Life Case #1 - Solution

● Transaction after fix #1

○ Transaction time: 8.3 s

● Still present:

○ High ACK-times at App-Srv:

200 ms

○ Still overloaded machine

(RAM to be added)

● Retransmissions due to

packet loss

○ Caused by Duplex

Mismatch between APP-

Server and DB-Server

#sf21veu
Lessons learned – Case 1

● An overloaded App-Server caused high delays.
○ Filter out TCP-ACKs (tcp.len > 1)
○ Look at large Delta Times
○ Check Flow Graph

● Reorganizing the database helped

● Adding RAM helped as well

● Duplex mismatch between Switch and Router caused
packet reordering and retransmission

● Important: Don‘t stop after you identified the first
problem.

#sf21veu

Case Study 3

#sf21veu
Real-Life Case #3

● Case: Accounting software usage after moving Data
Center to a new Service Provider

● Customer: Agency for temporary work.

● Problem: High transaction times, higher than baseline
 Permanent

● Transaction: Login-Process for user

● Trace File: 3-VDI.pcapng
Reference: 3-TS.pcapng

● Wireshark Profile: App-Analysis-III

● Suspects: „Check out everything!“

#sf21veu
Case #3 – network map

● Normal client
○ VDI Client accesses app server

directly

○ Problem: Longer transaction

times

● Intermediate test
○ VDI-Client via Terminal Server

○ Result: Better transaction

times

● Let‘s start the analysis.

#sf21veu
Case #3 – Capture Preps

● Problem affected all users using the main application

○ Replicable process

○ We selected a typical task where a baseline existed.

■ User Login

○ Traces were taken - data was filtered and isolated

■ 3 client traces showed similar figures

■ So it was really a repeatable process

○ Traces were taken for

■ Pure VDI users

■ Terminal Server test users

#sf21veu
Case #3 - Analysis

● Transaction: User Login
○ VDI: 31 seconds, 18056 packets

○ TS: 10 seconds, 18035 packets

○ Baseline: 8 seconds, # of packets unknown

● Questions
○ What makes VDI so slow?

○ Why is TS much faster?

○ Where is the bottleneck?

○ How can we improve the performance?

#sf21veu
Case #3 - Analysis

● VDI-Client

○ Filter out ACKs, then sort by Delta Times

○ Note the three high Delta Times, all from VDI Client

#sf21veu
Case #3 – Analysis

● VDI-Client

○ Large gaps on

client side

○ Longest is 12

seconds

#sf21veu
Case #3 – Analysis

● Terminal Server

○ Lower values for Large Delta Times, all from Terminal Server

#sf21veu
Case #3 – Analysis

● Terminal Server

○ Gaps on client side

○ Longest is 1.4

seconds

#sf21veu
Case #3 – Resolution – Who‘s to blame?

● Who is responsible for most of the increase in transaction time?
○ VDI-Client, Database Server, Terminal Server?

● Answer: It must be the …
○ VDI-Client

○  Check for reasons for the „high think times“ on VDI Client

● Action:
○ Improve the hardware of VDI host and the VDI software platform

● Findings
○ Improved the transaction time, but still worse than baseline.

● Is there still room for improvement?
○ Database Server?

○ Firewall?

#sf21veu
Case #3 - Extras: Summarizing the Response Times

● Isolated Client and

Server times

● Client Idle Times:
○ VDI: 21.15 s

○ TS: 6.53 s

● Server Response Times
○ VDI: 9.94 s

○ TS: 3.41 s

#sf21veu
Case #3 – Extras: How this was done

● VDI Client Metrics

● Total Time spent:

31 seconds

○ At VDI-Client:

21.15 s

○ Network + Server +

Application:

9.94 s

#sf21veu
Case #3 – Extras: How this was done!

● Terminal Server

Metrics

● Total Time spent:

○ At Terminal Server:

6.53 s

○ Network + Server +

Application:

3.41 s

 which is 6,55 s

less than SRT at VDI

#sf21veu
Case#3 – Effect of Round Trip Time

● One Round Trip:
○ Difference: 0.777 ms

● ~ 8560 turns
○ Difference: 6,65 seconds
○ Added by the firewall

● Guess what the customer
responded, when we told
him…

● Let‘s remove the firewall!

● Was he right?

#sf21veu
Lessons Learned – Case 3

● VDI Clients have to carry the load of the application!

○ Need enough performance!

○ Applications often show a tendency towards Terminal Services or to

VDI

● Firewalls add extra delay

○ But was the firewall the real problem?

● A huge number of application turns has great impact on app

performance

○ Small increase on RTT, but huge overall delay

● Would you remove the firewall or have the application rewritten?

#sf21veuApplication Metrics for Database Applications

● Key Metrics
○ SRT at Front End vs.

○ Duration of database process

● Additional Metrics
○ SRTs at Database (TDB)

○ App-Server „think“ times

(TAP)

○ Number of application turns

○ Round Trip Time

○ RTT * Number of Turns =

Minimum Transaction Time

#sf21veu
Lessons Learned

Database Applications are sensitive to

● High Server (DB) response times -> Slow database

● Long Client wait times -> Slow Application on Client or App-Srv

● Very sensitive to Round Trip Time (RTT)

○ Many application turns should be avoided

○ Programming Techniques: „Row by Row is slow by slow“

#sf21veu
Q & A

● Questions from the chat?

#sf21veu
Thank You!

● Thank you for listening!

● Please leave your feedback in the feedback portal.
○ https://forms.gle/vELKPFgDobAMVC8n7

○ Link also in Chat and published on SharkFest documents.

● For further questions meet me on Discord Server
○ Voice Channel: zoom 1 discussion

○ Starts in 5 minutes after this presentation ends

● Contact me
○ Matthias.Kaiser@experteach.de

○ Twitter: @wiresharky

mailto:Matthias.kaiser@experteach.de

#sf21veu

End of Presentation

#sf21veu

#sf21veu

Case Study 2

#sf21veuReal-Life Case #2

● Case: New application in emergency room of a

hospital

● Real-Life Case #2: Application freeze for users  Intermittent

● Trace File: 2-Before-oneclient.pcapng

2-Before-allclients.pcapng

● Wireshark Profile: App-Analysis-II

● Suspects: Network

● Questions: Is it the network?

If not, where is the problem?

#sf21veu
Real-Life Case #2 - network map

● Sample Client machines

○ 3 Virtual-Clients at Site 2,

VDI clients at HQ.

○ 1 Fat-Client at Site 2

● All four users reported problems

○ „Application freeze“

○ Freezes > 10 seconds

○ App freezes, not the client.

● Intermittent Problem

#sf21veu

Real-Life Case #2 -

Methodology

● Identify communication pattern

● Methodology
○ Capture 4 clients simultaneously

Traces were captured on fat client and on VDI clients.

○ Ask users to note application freeze times

○ Try to correlate noted freeze times to packets in the trace files

● Analysis
○ Check network performance (RTT and TCP errors)

■  RTT: 4ms, No Errors

○ Then check Server Response Times

○ And check Server Performance

#sf21veuReal-Life Case #2 - Analysis

● Communication Pattern
○ HTTP POST 

○  HTTP/1.1 200 OK

○ http.time shows

Application Response Time

● Task
○ Identify high values for SRT

for HTTP

○ Correlate with times, when

users noted an application

freeze

#sf21veuReal-Life Case #2 - Analysis

● First check with one

client
○  High values for SRT.

○ High SRT values correlated

with application freeze.

○ High SRT values showed

random timing

● Next step
○ Long term capture on

4 clients

#sf21veu
Setting up the long term capture

● Long term capture with tshark
○ Batch file to start tshark for 1 day

■ tshark -i 2 -w file.pcapng -B 200 -a duration:86400

-b filesize:200000

○ Batch file put into Windows Task Scheduler
■ Starting after Login with SYSTEM rights (not interactive)

● First steps
○ Automated trace file processing with tshark and mergecap
■ Merge related files with mergecap
■ Filter by ip address and http packet with tshark
■ tshark -2 -r infile.pcapng –Y „filter-expr“

–w outfile.pcapng“

#sf21veu
Case#2 - Analysis

● Evaluate the file via tshark script

● Result

#sf21veu
Case#2 - Analysis

● Evaluate via i/O
graph
○ HTTP peak SRT values

○ MAX(http.time)

#sf21veu
Case#2 - Analysis

● Findings:
○ Server Related Problems

● At Server
○ Processes for IIS and MS-SQL went up to 98% CPU utilization

every now and then (always together)

● From trace file
○ High response time were only seen when

one specific transaction was issued from the client.

● This was reported to the company who wrote this

application …

#sf21veu
Case#2 - Solution

● Surprise: They listened and found a
problem

● Software Update: We were asked to check
performance again

● Trace files: 2-After-oneclient.pcapng
2-After-allclients.pcapng

● Wireshark Profile: App-Analysis-II

#sf21veuReal-Life Case #2 - Solution

● Result
○ Most of the high values

for SRT were gone.

○ No app freeze noted by

users any more.

● Still open
○ Response times of 1 s

#sf21veu
Case#2 - Solution

● Evaluate via i/O graph
○ HTTP peak SRT values

○ http.time -> Max

#sf21veu
Lessons Learned – Case 2

● Simple application Pattern

● No network problems

● High response times at Appserver
○ High load on Database Service

○ Timeout at Webserver

○ Specific application calls hung

● If it is not the network, check on the server
side.

#sf21veu

