Wireshark Developer and User Conference

Hands-On Lab:
Using Wireshark CLI Tools & Scripting

June 14, 2011

Sake Blok

Application Delivery Troubleshooter | SYN-bit
sake.blok@SYN-bit.nl

SHARKFEST ‘11
Stanford University
June 13-16, 2011

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Hands-On Exercises

Get the exercise files from:
http://www.SYN-bit.nl/files/sharkfest-2011.zip

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

http://www.SYN-bit.nl/sharkfest10.zip
http://www.SYN-bit.nl/sharkfest10.zip

* Introductions

* Why use CLI tools?
... and how?

e Wireshark CLI tools

e Useful shell commands

* Some Scripting Examples
* Q&A

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Introductions

* In Networking since 1995

* Jobs of influence:
— EuroNet, one of the first ISP's in The Netherlands
— ABN/Amro bank, Routing, Switching, Loadbalancing
— ION-IP, reseller of Alteon, F5, Cisco ACE

— SYN-bit, my own company, troubleshooting, training
and ADC consultancy (F5 iRules)

* Have been using ethereal/wireshark since 1999

* Developing for wireshark since 2006
(GUI, IP/TCP/HTTP/SSL, bug fixes)

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Why use the CLI tools?

* When GUI is not available (shell access)
* Quick and Easy Analysis

* Postprocessing results

— GUI is powerful & interactive, but fixed functionality
— CLI combined with other tooling is very flexible

e Automation

CLI not only when GUI is unavailable

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

e What information do | need?

— visualize your output

* What (raw) data sources do | have?

— Know the output formats of your data sources

e What tools are available?

— What can they do, browse through manpages for
unknown options

Practice, Experiment & be Creative :-)

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Wireshark CLI tools

* tshark

* dumpcap
* capinfos

* editcap

* mergecap

* rawshark
(not covered)

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

tshark (1)

e CLI version of wireshark

* Similar to tcpdump, but statefull / reassembly
.... and MANY full protocol decodes

* uses dumpcap as capture engine

e standard options: -D, -i, -c, -n, -, -f, -R, -s, -w, -r
* name resolving (-n)

e time stamps (-t<format>)

* decode as (-d tcp.port==8080, http)

* preferences (-o <pref>:<value>)

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

tshark (2)

* output formats (-V or -T <format>)
— default: summary, uses column prefs

— Verbose (-V), hex dump (-x), protocol selection (-O)QW

— PDML (-T pdml)
— fields (-T fields -E <sep> -e <field1> -e <field2> ...)

e statistics (-z ...)
— protocol hierarchy (-qz io,phs)
— conversations (-gz conv,eth, -qz conv,tcp)

— i/o statistics (-gz io,stat,10,ip,icmp,udp,tcp)

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Exercise 1

Using different output formats

a) First use 'tshark -r http.cap' to show normal output
b) Show full decodes (use 'tshark -r http.cap -V')
c) Show PDML (XML) decodes (use '-T pdml’)

d) Do a, b and c again, but now pipe the output through the
command wc (word count), like 'tshark -r http.cap | wc'.
How much output is generated with each output
format? How large was the file http.cap to begin with?

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Exercise 2

Decoding protocols on non-standard ports eort-1234.cap
with tshark ("Decode as...")

a) Display the contents of the with tshark. What protocol is
recognized for port 12347

b) Use the option '-x' to view hex/ascii output too. What
protocol is transported over tcp port 12347

c) Now use 'tshark -r port-1234.cap -d tcp.port==1234,http'
to decode tcp port 1234 as http. Is it possible to filter on
http now?

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Exercise 3

Protocol preferences from the command line sst.cap

a) Display the contents of file ssl.cap with tshark, do you
see http traffic?

b) Use '-o ssl.keys list:192.168.3.3,443,http,key.pem’, do
you see http traffic now?

c) Which version of OpenSSL is used by the webserver (use
'-V' and look at the “Server: <xxx>" http header)

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Exercise 4

Extracting interesting traffic to a new file

a) Use tshark with option '-o
tcp.desegment_tcp streams:TRUE' and filter on http

b) Now use tshark with option '-o
tcp.desegment_tcp streams:FALSE' and filter on http.
How is this output different from the output in 4a?

c) Do 4a and 4b again, but now use '-w' to write the output
to 4a.cap and 4b.cap respectively. Read 4a.cap and
4b.cap with tshark, can you explain the difference?

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Exercise 5

The tshark -z statistics mail.cap

a) Create a protocol hierarchy with '-gz io,phs’, which
protocols are present in the file?

Create a ip conversation list with '-gz conv,ip'
Create a tcp conversation list with '-qz conv,tcp'

Create some io statistics with
'-qz io,stat,60,ip,tcp,smtp,pop’

Did the previous commands give you an overview of the
contents of mail.cap?

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

dumpcap

e used by (wire|t)shark
... for privilege separation

* can be used separately

e options similar to tshark

* fast! only network->disk

* stateless! so traces can run forever

* ring buffer feature extremely useful:
dumpcap -1 5 -s0 -b filesize:16384 -files:1024 -w ring.cap

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

capinfos

* display summary of a tracefile
* all info vs specific info
* Or in table form with -T

S capinfos example.cap S capinfos -ae sharkfest-*.cap

File name: example.cap File name: example.cap

File type: Wireshark/tcpdump/... - Start time: Thu Jan 17 11:37:16 2008
libpcap End time: Thu Jan 17 11:58:55 2008
File encapsulation: Ethernet

Number of packets: 3973 File name: sharkfest-2.cap

File size: 1431813 bytes Start time: Thu Jan 17 11:39:27 2008
Data size: 1368221 bytes End time: Thu Jan 17 12:02:52 2008
Capture duration: 1299.436650 seconds

Start time: Thu Jan 17 11:37:16 2008

End time: Thu Jan 17 11:58:55 2008

Data rate: 1052.93 bytes/s

Data rate: 8423.47 bits/s

Average packet size: 344.38 bytes

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

editcap (1)

* used to select packets in a capture file

— select frame ranges or time ranges

editcap -r example.cap tmp.cap 1-1000 2001-3000
editcap -A "2008-01-17 11:40:00" \
-B "2008-01-17 11:49:59" example.cap tmp.cap

- split file in chunks

editcap -c 1000 example.cap tmp.cap
editcap -1 60 example.cap tmp.cap

— remove duplicate packets
editcap -d example.cap tmp.cap

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

editcap (2)

* used to change (packets in) a capture file

— change snaplen
editcap -s 96 example.cap tmp.cap

— change timetamps
editcap -t -3600 example.cap tmp.cap

— change link layer type
editcap -T user(0 example.cap tmp.cap

— change file type

editcap -F ngsniffer example.cap tmp.cap

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

mergecap

* used to merge capture files:

— based on timestamps
mergecap -w out.cap in-l.cap in-2.cap

— or just append each file
mergecap -a -w out.cap i1n-l.cap 1n-2.cap

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Exercise 6

Splitting capture files with editcap nail.cap

a)

Execute the command 'editcap -i 60 mail.cap tmp.cap'.
How many files are created?

Use 'capinfos -Tcae tmp™' to display a summary of these
new files. Why are the timestamps not exactly 60
seconds apart?

Remove the 'tmp*' files

Execute the command 'editcap -¢c 1000 mail.cap
tmp.cap'. How many files are created?

Use 'capinfos -Tcae tmp™' to display a summary of these
new files.

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Exercise 6 (continued)

Merging capture files with mergecap ——

a) Use 'mergecap -w mail-new.cap tmp™'. Is the resulting
file exactly the same as mail.cap?
(tip: use 'cmp <filel> <file2>")

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Exercise /

Adjusting timestamps with editcap mail.cap

a) Use 'editcap -t <delta>' to create a new tracefile
(tmp.cap) where the first packet arrived exactly at
11:39:00 (tip: use -V -c1' to see the exact timestamp of
the first packet). What is your '<delta>'?

b) What is the timestamp of the last packet in the new file?
Are all packets adjusted with the same '<delta>'?

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Getting Help

e Use “<command> -h” for options
... check once-in-a-while for new features

* Read the man-pages for in-depth guidance
(see: http://www.wireshark.org/docs/man-pages/)

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

http://www.wireshark.org/docs/man-pages/
http://www.wireshark.org/docs/man-pages/

Useful shell commands

* bash internals:
, >, for ... do ... done, <command>

* cut
* sort
* unig
° tr

* sed
* awk

* scripting (sh/perl/python/...)

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

|, >, for...do ... done

* Command piping with '|'
ls -1t | head

e Output redirection with '>'
ls -1t | head > 10-newest-files.txt

* Looping with for ... do ... done

for word in 'one two
Sword; done

'three'; do echo

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

‘<command> , variable assighments

* Command evaluation with backtics ()
for file in 1ls -1t | head"
do
echo Sfile
head -1 S$file
echo ""
done > firstlines.txt

* Variable assignments
backupfile= echo ${file}.bak"

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

* By character position (-c <range>)
cut -cl-10 /etc/passwd

* By field (-f<index> [-d '<delimiter>']

cut -d ':' -fl1 /etc/passwd

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

* General alphabetic sort (no option)
sOort names.tXxt

* Reverse sorting (-r)
sort -r names.txt

* Numerical (-n)
sort -n numbers.txt

e Or combined:
du -ks * | sort -rn | head

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

* De-duplication (no option)
sort names.txt | unigq

* Show only 'doubles’ (-d)

sort names.txt | uniq -d

e Count occurrences (-c)
sort names.txt | uniq -c

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

* Translate a character(set)

echo "One two " ‘ tr noon u_u
eChO "Code 217" ‘ tr ||[0_9]u II[A_J]II
echo "What is a house?" | tr "aeiou"

Delete a character(set)

echo "no more spaces" | tr -d " "
echo "no more vowels" | tr -d "aeiou"
cat dosfile.txt | tr —d "\015" > unixfile.txt

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

 Stream editor

* Very powerful ‘editing language’

* Some simple examples:
— deleting text:

sed -e 's/<deleteme>//'

— replacing text:
sed -e 's/<replaceme>/<withthis>/'

— extracting text:
sed -e 's/”".*\(<keepme>\).*\(<andme>\).*$/\1 \2/'

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

e Pattern scanning and processing language

* Also a very powerful language

* Some simple examples:

netstat -an | \
awk 'S$1~"tcp" {print $4}' | \
sort | uniq —c

.. | awk '{printf("%stcp.port==%s",sep,$1l);sep="||"}"

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

scripting

e parsing output when command piping is not
enough

* automate execution of tshark/dumpcap/
mergecap etc

* use your own favorite language
(sh/perl/python/etc)

do anything you want :-) |

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Some Examples

* Using command piping example.cap

— Counting http response codes
— Top 10 URL's

— All TCP sessions which contain session-cookie XXXX

* Using scripting

— All sessions for user XXXX (shell script)

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 1: Counting http response codes (1)

* Problem

— | need an overview of http response codes

* Output

— table with http response codes & counts

* Input
— Capture file with http traffic

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 1: Counting http response codes (2)

 Steps to take
— print only http response code
- count

— make (sorted) table

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 1: Counting http response codes (3)

e Command:

tshark -r example.cap -R http.response
-T fields -e http.response.code |\
sort | uniq -c

* New tricks learned:
-T fields -e <field>

| sort | uniq -c

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 2: Top 10 requested URL's (1)

* Problem

— | need a list of all URL’s that have been visited

* Output

— Sorted list with requested URL’s and count

* Input
— Capture file with http traffic

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 2: Top 10 requested URL's (2)

* Steps
— Print http.host and http.request.uri
— Strip everything after “?”
— Combine host + uri and format into normal URL
— count url’s

— make top 10

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 2: Top 10 requested URL's (3)

e Command:

tshark -r example.cap -R http.request \

-T fields -e http.host -e http.request.uri |\
sed -e 's/?.*$//' |\
sed -e '"s#"\(.*\)\t\(.*\)S#http://\1\2#"' |\

sort | unig -c | sort -rn | head

* New tricks learned:
remove unnecessary info : sed -e 's/?.*$//"
transform : sed -e 's#*\(.*\)\t\(.*\)S#http://\1\2#"

topl0: | sort | uniqg -c | sort -rn | head

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 2: Top 10 requested URL's (3)

e Command:

tshark -r example.cap -R http.requ
-T fields -e http.host -e

sed -e 's/?.*$//' |\

sed -e 's#"\(.*\)\

sort | unig -

necessary info : sed -e 's/?.*$//"
ransform : sed -e 's#"\(.*\)\t\(.*\)$#http://\1\2#'

topl0: | sort | uniqg -c | sort -rn | head

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 3: All sessions with cookie XXXX (1)

* Problem

— | know in which “session” a problem exists, but | need
all data from that session to work it out

* Output

— New capture file with whole tcp sessions that contain
cookie PHPSESSID=cObb9d04cebbc765bcobc366663fcaf

* Input
— Capture file with http traffic

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 3: All sessions with cookie XXXX (2)

* Steps
— select packets that contain the cookie
— print the port numbers
— create new filter based on port numbers
— use filter to extract tcp sessions

— save packets to a new capture file

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 3: All sessions with cookie XXXX (3)

e Command:

tshark -r example.cap -w cookie.cap \
-R "tshark -r example.cap -T fields -e tcp.srcport
-R "http.request and http.cookie contains \
"PHPSESSID=c0bb9d04cebbc765bc9bc366f663fcaf\"" |\
awk '{printf(“%stcp.port==%s",sep,1l);sep="||"}* °

e New tricks learned:

tshark -R "<other command that generated filter>"

awk '{printf("%stcp.port==%s",sep,S$1);sep="|]|"}"

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 4: All sessions for user XXXX (1)

* Problem

— A particular user has multiple sessions and | need to
see all sessions from that user

* Output

— New capture file with all data for user xxxx

* Input
— Capture file with http data

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 4: All sessions for user XXXX (2)

* Steps
— print all session cookies for user XXXX

— create new capture file per session cookie
(see example 3)

— merge files to new output file

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 4: All sessions for user XXXX (3)

#!/bin/bash

file=S1
user=S$2

for cookie in “tshark -r S$file -R "http.request and http contains Suser" -T
fields -e http.cookie | cut -d ' ' -f2°
do

tmpfile="tmp ~echo $cookie | cut -d '=' -f 2~ .cap"

echo "Processing session cookie S$Scookie to S$tmpfile”

tshark -r $file -w $tmpfile -R “tshark -r S$file -T fields -e tcp.srcport \
-R "http.request and http.cookie contains \"S$cookie\"" | \
awk '{printf("%stcp.port==%s",sep,$1);sep="||"}"'"
done

mergecap -w Suser.cap tmp *.cap
rm tmp_ *.cap

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Example 4: All sessions for user XXXX (4)

* New tricks learned:

for .. do .. done
<var>="echo .. | ..
cut -d <FS> -f <x>

mergecap -w <outfile> <infilel> <infile2> ..

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Exercise 8

Create a new trace file for a specific pop user mait.cap
that contains only his pop sessions.

a) First get an idea of a typical POP session, use :
tshark -r mail.cap -R 'tcp.port==64315 and tcp.len>0'

b) Use the following steps to create a list of tcp ports used
by user 'sake-test2':

* Use the filter ' pop.request.parameter=="sake-test2" ' to only show
sessions of user sake-test?2

* Add '-T fields -e tcp.srcport' to the command to just show the tcp ports.

* Add | awk {printf("%stcp.port==%s",sep,S1);sep="||"}' to create a
display filter that will only display packets belonging to the sessions for
user sake-test2.

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Exercise 8 (continued)

c) Now use the output of the previous command between

backticks to create the new file:
tshark -r mail.cap -w sake-test2.cap -R <previous

command>

Use 'tshark -r sake-test2.cap -R
pop.request.command==USER' to verify that the new file
only contains sessions of user sake-test2. Did we
succeed? What went wrong? How can we fix it?

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Exercise 9

Creating a separate trace file for each pop
user automatically.

a) Delete the file sake-test2.cap

b) Create a list of users with the following steps:

* Use a filter to only select the packets where the pop command was
“USER” and use '-T fields' to only print the username.

* Use'| sort | uniqg' to create a list of unique usernames

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Exercise 9 (continued)

c) Loop through the list of usernames and create the file
per user with:

for user in “<command from 9b>"

do

echo Suser
<command from case 8c with Suser as variable>

done

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

Exercise 10 : Challenge!

Create a shell script [or a one-liner ;-)] that
produces the following output:

Mail check times for : sake-testl

11:39:43
11:40:00
11:42:33
11:45:04
11:47:37
11:50:09
11:52:40
11:55:13
11:57:46
12:00:28
12:02:49

1 message (2833 octets)
messages (0 octets)
messages (25958 octets)
messages (21538 octets)
messages (17480 octets)
messages (32297 octets)
messages (17017 octets)
messages (21075 octets)
messages (20859 octets)
messages (25416 octets)
message (3677 octets)

= 4 000 U1 0 U O J O

Mail check times for : sake-test2

11:39:44
11:40:01
11:42:34
11:45:05
11:47:38
11:50:10
11:52:42
11:55:14
11:57:46
12:00:22
12:02:50

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

(92}

messages (14512 octets)
messages (16811 octets)
messages (17568 octets)
messages (8551 octets)
messages (16337 octets)
messages (5396 octets)
messages (20601 octets)
messages (12089 octets)
messages (14463 octets)
messages (15016 octets)
messages (14805 octets)

(= G2 I O) BN (S I o)N S 62 o))

Summary

* Wireshark comes with powerful CLI tools
(tshark, dumpcap, capinfos, editcap, mergecap)

* tshark+scripting can complement GUI

* use little building blocks and combine them

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

SHARKFEST ‘11 | Stanford University | June 13-16, 2011

55

FIN/ACK, ACK, FIN/ACK, ACK

Thank you for listening!

e-mail:
sake.blok@SYN-bit.nl

SYN—-pb1t
deep traffic analysis

