## Wireshark Developer and User Conference

### **Using NetFlow to Analyze Your Network**

June 15<sup>th</sup>, 2011

#### **Christopher J. White**

Manager Applications and Analytics, Cascade Riverbed Technology cwhite@riverbed.com

#### **SHARKFEST '11**

Stanford University June 13-16, 2011

### **NetFlow Data Collection**

Collecting flow reports from devices throughout the network to provide flow-level visibility into network behavior and how traffic is delivered end-to-end across the network.

### **NetFlow Data Collection**

- Overview
  - Flow Definition
  - Observation Points
  - Flow Records and Export
  - Flow Collection
  - Deduplication and Time Slices

#### What is a Flow?

- A <u>Flow</u> is a set of IP packets in the network that all share a common set of key attributes
- A typical flow is based on the 5-tuple: <SrcIP, DstIP, Protocol, SrcPort, DstPort>
- In general, a flow is unidirectional, e.g. describing only half of a TCP connection
- A flow may be defined only a subset of available attributes, such as just <SrcIP, DstIP>

Flows are tracked at Observation Points

- The <u>same logical flow</u> may be observed at <u>multiple</u> different observation points
  - Different devices as the flow traverses the network
  - Within the same device, ingress and egress

 The same flow may (and probably will) yield different counts at each observation point

#### Ingress Flow

- Flow is incoming to the device at the observation point
- Bytes / Packets received at the ingress interface prior to processing

#### Egress Flow

- Flow is leaving the device at the observation point
- Bytes / Packets transmitted at the egress interface after processing



- Flow Key set of attributes that distinguish one flow from another
  - Most common key is the 5-tuple: <SrcIP, DstIP, Protocol, SrcPort, DstPort>
  - Key is usually fully configurable based on standard IP Packet Fields
- Flow Record collection of information gathered about a flow at an observation point
  - Flow Key values
  - Bytes / Packets observed
  - Ingress / Egress interface
  - QoS tags

 Metering – the process of generating flow records based on packets at an observation point

**Exporting** – sending flow records to one or more collectors

for further processing



#### Typical NetFlow v5 Flow Record

| Exporter Address       | 10.99.1.1           |  |  |
|------------------------|---------------------|--|--|
| IP Source              | 10.1.1.121          |  |  |
| IP Dest                | 74.125.67.100       |  |  |
| Protocol               | TCP                 |  |  |
| TCP Source Port        | 16341               |  |  |
| TCP Dest Port          | 80                  |  |  |
| Bytes                  | 34,778              |  |  |
| Packets                | 29                  |  |  |
| TCP Flags              | SAPF                |  |  |
| Ingress Interface      | 1 /4                |  |  |
| Egress Interface       | 2                   |  |  |
| QoS                    | Default             |  |  |
| First Packet Timestamp | Oct 21, 8:24.12.321 |  |  |
| Last Packet Timestamp  | Oct 21, 8:24 14.929 |  |  |

#### When are Flow Records Exported?

- Flow Terminated
  - TCP connection terminated due to FIN / RST
- Inactive Flow Timeout
  - the flow has been inactive for 15s
- Active Flow Timeout
  - the flow has been active for 60s
- Forced Flow Discard
  - flow cache is full and a new flow must be allocated
  - LRU / Random

Is it possible to have multiple flow record exports for the same flow?

(from the same observation point)

- Yes long lived flows, forced discard, etc.
- Each exported Flow Record is an update to the flow
  - Flow Key is identical in each update
  - Flow Record changes, eg. bytes / packets counters are deltas seen since the last export for this flow

- What is the mechanism for exporting flow?
  - Flow Records are exported via IP to a configured <u>Flow</u>
    <u>Collector</u> IP Address / Port
    - UDP for NetFlow v5/v9
    - UDP/TCP/SCTP for IPFIX
  - Flow Export is a <u>continual</u> process for as long as the device is up and receiving packets

### Flow Export is a <u>continual</u> process...

| Start       | End         | SrcAddr      | DstAddr       | Proto | SrcPort | DstPort | Packets | Bytes   | Flags |
|-------------|-------------|--------------|---------------|-------|---------|---------|---------|---------|-------|
| 8:00:15.234 | 8:01:14.782 | 10.1.1.1     | 192.168.1.2   | 6     | 80      | 28456   | 40      | 72,554  | SAPF  |
| 8:01:03.119 | 8:01:14.790 | 192.168.44.1 | 74.125.224.48 | 6     | 33152   | 80      | 52      | 14,032  | SA    |
| 8:00:15.345 | 8:01:14.921 | 192.168.1.2  | 10.1.1.1      | 6     | 28456   | 80      | 220     | 112,005 | SAR   |
| 8:01:15.448 | 8:01:15.448 | 192.168.14.1 | 10.4.1.2      | 17    | 58440   | 53      | 1       | 76      |       |
| 8:01:15.552 | 8:01:15.552 | 10.4.1.2     | 192.168.14.1  | 17    | 53      | 58440   | 1       | 520     |       |
| 8:00:19.445 | 8:01:15.634 | 10.1.1.1     | 10.1.2.4      | 1     | 0       | 8       | 50      | 6,104   |       |
|             |             |              |               |       |         |         |         |         |       |
| 8:01:19.021 | 8:02:16.789 | 192.168.1.2  | 10.1.1.1      | 6     | 28456   | 80      | 220     | 112,005 | AF    |
| 8:02:15.313 | 8:01:16.899 | 10.1.122.4   | 204.14.234.33 | 6     | 47125   | 80      | 10      | 620     | S     |

### Flow Export is a <u>continual</u> process...

| Start       | End         | SrcAddr      | DstAddr       | Proto | SrcPort | DstPort | Packets | Bytes   | Flags |
|-------------|-------------|--------------|---------------|-------|---------|---------|---------|---------|-------|
| 8:00:15.234 | 8:01:14.782 | 10.1.1.1     | 192.168.1.2   | 6     | 80      | 28456   | 40      | 72,554  | SAPF  |
| 8:01:03.119 | 8:01:14.790 | 192.168.44.1 | 74.125.224.48 | 6     | 33152   | 80      | 52      | 14,032  | SA    |
| 8:00:15.345 | 8:01:14.921 | 192.168.1.2  | 10.1.1.1      | 6     | 28456   | 80      | 220     | 112,005 | SAR   |
| 8:01:15.448 | 8:01:15.448 | 192.168.14.1 | 10.4.1.2      | 17    | 58440   | 53      | 1       | 76      |       |
| 8:01:15.552 | 8:01:15.552 | 10.4.1.2     | 192.168.14.1  | 17    | 53      | 58440   | 1       | 520     |       |
| 8:00:19.445 | 8:01:15.634 | 10.1.1.1     | 10.1.2.4      | 1     | 0       | 8       | 50      | 6,104   |       |
|             |             |              |               | •••   |         |         |         |         |       |
| 8:01:19.021 | 8:02:16.789 | 192.168.1.2  | 10.1.1.1      | 6     | 28456   | 80      | 220     | 112,005 | AF    |
| 8:02:15.313 | 8:01:16.899 | 10.1.122.4   | 204.14.234.33 | 6     | 47125   | 80      | 10      | 620     | S     |

### Flow Export is a <u>continual</u> process...

| Start       | End         | SrcAddr      | DstAddr       | Proto | SrcPort | DstPort | Packets | Bytes   | Flags |
|-------------|-------------|--------------|---------------|-------|---------|---------|---------|---------|-------|
| 8:00:15.234 | 8:01:14.782 | 10.1.1.1     | 192.168.1.2   | 6     | 80      | 28456   | 40      | 72,554  | SAPF  |
| 8:01:03.119 | 8:01:14.790 | 192.168.44.1 | 74.125.224.48 | 6     | 33152   | 80      | 52      | 14,032  | SA    |
| 8:00:15.345 | 8:01:14.921 | 192.168.1.2  | 10.1.1.1      | 6     | 28456   | 80      | 220     | 112,005 | SAR   |
| 8:01:15.448 | 8:01:15.448 | 192.168.14.1 | 10.4.1.2      | 17    | 58440   | 53      | 1       | 76      |       |
| 8:01:15.552 | 8:01:15.552 | 10.4.1.2     | 192.168.14.1  | 17    | 53      | 58440   | 1       | 520     |       |
| 8:00:19.445 | 8:01:15.634 | 10.1.1.1     | 10.1.2.4      | 1     | 0       | 8       | 50      | 6,104   |       |
|             |             |              |               |       |         |         |         |         |       |
| 8:01:19.021 | 8:02:16.789 | 192.168.1.2  | 10.1.1.1      | 6     | 28456   | 80      | 220     | 112,005 | AF    |
| 8:02:15.313 | 8:01:16.899 | 10.1.122.4   | 204.14.234.33 | 6     | 47125   | 80      | 10      | 620     | S     |

- What devices export flow?
  - Most devices already in your network:
    - Routers
    - Switches
    - Riverbed Steelheads
    - Probes (Cascade Sensor, Packeteer..)

## Types of Flow

#### NetFlow v5

- Widely in use, supported by multiple vendors
- Fixed content flow record with basic counters and flow information

#### NetFlow v9

- Drastic increase in available fields
- Templates allow customization of data collected
- Official support for ingress and egress flows

### IPFIX (NetFlow v10)

IETF Working Group standard based on v9

## Types of Flow

#### J-Flow / Packeteer

NetFlow like variants

#### S-Flow

Sampled

#### Cascade Sensor Flow

- L7 Application tag
- Performance Metrics
  - Network RTT / Response Time
  - TCP Retransmissions
- packets

### Flow Collection

 Flow Collector – a device receiving flow records from one or more flow exporters



### Flow Collection

- The Flow Collector typically serves three primary functions:
  - Logging storing flow records on disk, with postprocessing, may yield months to years of archival storage
  - Reporting processing logged flow records to generate reports on network behavior in multiple dimensions
  - Alerting real-time analysis of network behavior and alerting based on comparisons to thresholds and baselines

### Flow Collection

• What about collecting multiple flow records for the same flow... but from different sources?

 Yes... each device that is exporting netflow will send a unique record for the flow

- Collating records allows end-to-end analysis:
  - What routers are involved when a client in San Francisco connects directly to the database server?
  - How did the byte counts change?
  - Was the QoS consistent across the network?

- Three Primary Comparisons
  - Types of queries supported
  - Data storage
  - Visibility

### Supported queries

| Query Type                                                                                | Packets      | Flow         |
|-------------------------------------------------------------------------------------------|--------------|--------------|
| TCP inter-packet timing analysis                                                          | ✓            |              |
| TCP window size problems                                                                  | $\checkmark$ |              |
| SQL transaction times                                                                     | $\checkmark$ |              |
| Top host-pairs                                                                            | $\checkmark$ | $\checkmark$ |
| Clients connecting to external server                                                     | $\checkmark$ | $\checkmark$ |
| Number of connections on Router1:En1/0                                                    | $\checkmark$ | $\checkmark$ |
| Link congestion investigation (hosts involved, ports in use, when the congestion started) | ✓            | ✓            |
| SHART                                                                                     |              |              |

#### Filter Criteria

Hosts

Server

Client

Client Port

Server Port

Application

Interface

**Device** 

QoS

### Output Key

Hosts

**Host Pairs** 

Host Pairs with Server Port

**TCP Connection** 

Interface

Device

Server Port

Interface

Interface / QoS

Device

Application

Server / Application

Server / Server Port

#### Data Columns

**Bytes** 

**Packets** 

Connections

TCP Flags

Inbound Bytes (Inteface)

Outbound Bytes (Interface)

Tx Bytes (Cli → Srv)

Rx Bytes (Srv → Cli)

**Connection Duration** 

% Utilization (Interface)

TCP Retransmissions

**Network RTT** 

Server Delay

#### Data rates and storage

|                             | Packets        | Flow          |
|-----------------------------|----------------|---------------|
| Network load for 100Mb link | 100 Mb/s       | 2Mb/s         |
| Data Retention for 1TB Disk | 1 day          | 2 months      |
| Query over last hour        | Scan 50GB data | Scan 1GB data |

### Visibility

- Packets
  - Install one or more probes at each physical location
  - Configure SPAN or install a Tap at each observation point
  - Wire up probes for each observation point

#### NetFlow

- Install one collector in the data center
- Configure NetFlow export at each observation point
  - Point export a the single collector

### Flows to Packets

- Analysis with Flows
  - Historical reporting
  - Trending / Alerting
  - Network Problems
    - Faster queries
    - Broader visibility
    - Identify the actors involved (hosts, ports, devices)
  - Narrow the focus before diving in with Packets
    - Many problems can be fully diagnosed with flow-only

# Thank you

