(N SHARKFEST 13

Wireshark Developer and User Conference

Expanding Wireshark Beyond
Network Interfaces

Mike Kershaw, Kismet Wireless
Mike Ryan, ISEC Partners

Mike Kershaw

Kismet wireless sniffer

Various open-source hardware for
sniffing

Kisbee Zigbee sniffer

Daisho wired protocol sniffer

lllllllll!w!lllllllll-

Mike Ryan

Infosec Consultant @ ISEC Partners
Bluetooth LE Researcher
2 cool 4 skool

MEGA DISCLAIMER: | speak only for
myself and not my employer. I'm lucky they
let me take work off today.

Wireshark is an amazing tool with decoders for a lot
of protocols

Open Source Hardware has seen a great boom
recently

All sorts of interesting things out there which
capture packets, but which are not network
interfaces

How do we bring these into the fold easily?

Developer simplicity - If it's a huge pain to add
Wireshark support to 3rd-party projects, it just won't
happen

Multi-platform support - We don't want to reduce
Wireshark's cross-platform functionality

Ease of use - It needs to make sense to end users!
Security - Don't compromise privsep

Captures from network devices

Loads from pcap files

Network-centric (obviously)

Able to handle non-Ethernet traffic already (Wi-Fi,
TokenRing, USB, other esoterica)

Still needs to be a network interface or a file

. Log to a file, open in Wireshark
» Not real-time, kind of annoying

» Play games with tun/tap network devices and clone

packets into a virtual netdev

» Requires root to manipulate interfaces, somewhat complex, not

cross platform at all
- \Write to a pipe

» Best option so far, annoying for end users

Don't break capturing from network devices

Don't force compiling plugins directly into Wireshark
MAKE IT EASY. People doing random custom

projects won't spend a lot of time

Present a standard Wireshark Ul - if it's unusable or

opaque it's worthless

Wireshark & Pcap like network interfaces

All network interfaces are configured the same way
(more or less)

Running arbitrary binaries is really scary from a
security standpoint

Things that don't act like network devices need

weird configs

Wireshark (and dumpcap) can read from pipes!
Pipes are multiplatform!

Making a simple configuration grammar lets us
define custom Ul elements

Placing responsibility for privilege escalation with
the capture binary solves security issues

Minimal changes to Wireshark internal code

Each external capture 'plugin’ is an executable
provided by capture tool developers

Don't care what language it's in

Responds to a set of basic arguments to list
interfaces, config options, and initiate capture
Writes to a named pipe fed to dumpcap

Basic config grammar describes Ul

» Extcaps are launched by Wireshark - no more Initial
privs than the starting user

- Extcap privs are controlled by whatever provided
the extcap - if it needs suidroot, they can grant that.
We can't know if they do, and don't grant it

» Config grammar is non-turing, just markup

[type] {[attribute]=[value]}*

Each type is a sentence

Extremely simple to generate - designed to be easy
to add to tools, generate from printf

Simple to parse - non-evaluated, non-escaped, non-

turing

. Interface sentences list known interfaces for each
extcap, and a user-displayable interface name as
well as the calling value passed back to extcap

. Interfaces make up the list of supported interfaces
in Wireshark

interface {display=Interface One} {value=intl}

interface {display=Interface Two}{value=int?2}

- Multiple interfaces can be supported by a single
extcap plugin (same as multiple Ethernet devices)

. Each interface can have independent configs and
will spawn an independent extcap capture

- Extcap plugin provide a list of interfaces, allowing

for searching USB, remote network, etc

» Extcap tools need to tell Wireshark what DLTs are
supported on a capture
- Provides DLT#, name, and displayable field

dlt {number=147}{name=USERO} {display=Bluetooth Low Energy}

DLT = Data Link Type
Specifies Link Layer

Most complex function to handle

Can be presented to the user as several types; int,
double, etc text fields, boolean checkboxes,
checkbox lists

Can also be populated GTK types like selector or
radio buttons

Allows for tooltips for explanation

Each argument has a ‘call=" argument, which'is the
literal call made to the extcap binary

Can be 'call=--longarg' or 'call=-a'

'type=" determines how it is presented in Wireshark
Selector/Radio/Check selectors are populated with

additional 'value' sentences

default=24

» Multiple value sentences can be associated with an
argument

. Pre-fills selectables or radio button groups

- \Whatever the user selects will be passed to the

argument'’s call

arg {argnum=0}{value=12345}{display=First}

- [ake each 'arg’' sentence

» Build an argument list of the arg calls

- Run extcap binary pointing to the FIFO

some extcap --calll=foo --callZ2=bar --call3=1000000 --
fifo=/tmp/excapl2234324

We want to do as much as possible to make it hard
for the user to screw up

Since we're targeting esoteric hardware we want to
handle esoteric arguments

Transparently encode scientific notations (frequency
of 100e6)

Range checking can happen in the Ul

External capture tools: Requirements

Must respond to a handful of arguments

Must be able to write a pcap stream to a named
pipe
Must flush pipe after each packet

That's about it!

. What did we change?

- Not much!

. Wireshark has had pipes since like forever

. We just slap a nice[r] GUl on it

——
N—

- mumble mumble DLTs and exec'ing I N
extcaps 4 ;f’

@~

W/ ~__

n ptosrfaca | ice
WI r‘ :ﬂ Capture

(4

S

Ch

- W

nu

ory
(@)

q
- W
- W
0

)

o TSNS
Capture Interface Link-fayer header Prom. Mode | Snaplen [B] —
etho
O 133105 Ethernet enabled default
feB80-:3e97 eff-fe30 954f
1 mono 802.11 plus radiotap header enabled default
1 Linux netfilter log (NFLO... Linux netfilter log messages enabled default
1 monl 802.11 plus radiotap header enabled default &
G | 3
[[] capture on all interfaces Manage lnterfacesl
[] capture all in promiscuous mode '
Capture
2 Pipes I Local Interfaces I
File: r Pipes N
] use
Next New pture
fdext
[-Ring B Delete
Stop Ca X :
by Pipe: I/tmp}some_ﬁfo — Browse, .,
Cl.af | ion
.. aff
- ¥ close I [3ave :
D af ution

J{Help |

@) start | ¥ Close]

Call dumpcap -D to get all interfaces
Call dumpcap -L toget DLTs from interface

Select options from static GU!
Pass args into dumpcap for capture

Everything boils down to pcap
calls:

Wireshark, dumpcap, and
libpcap all need to be taught
new interfaces! LAME

Call dumpcap -D to getall PCAP interfaces
O For each extcap: extcap --list-interfaces
Call dumpcap -L toget DLTs from PCAP interface

O extcap --list-dlts --interface fool23
Select options from static GUl and dynamic GUI

O extcap --config --interface foo0l23
Pass args into dumpcap for capture

O extcap --capture --fifo /tmp/ex898
O dumpcap -i /tmp/ex898 <- pipe!

Either you just saw something awesome, or you just

saw us scramble and fail!

Maybe both?

Caplure

Interface List

Live list of the Capturw mtarfaces

Start

Choose one or more interfaces W capture from, then Start

Kishee /dev/ttyACMO: /devittyACMO
Ubertooth One 0707fc17534d11e74e1ad46¢f5000002: ubertooth0

rface Sethings

Capture
Interface: Ubertooth One 0707fc17534d11e74e1ad46ci5000002: ubertooth0

IP address: none

Linliayer héader type: Blustooth Low Fnergy ' v | Buffer SiZG!IZ I:l megabyte(s)
Capture packets in promiscuous mode

[] Caprure packets in monitor mode

[] Limit sach packet to |65573°

il Capture Filwr.l || - | Compile BPFI
Advertising Channel [E—
38
39

J3 Help I ¥ cancel <ok |

Demo!

74 7.440088000 e8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV IND

75 7.545738600 e8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV IND
611417600 65:65:62:73:69:6b:{TEEE 862.15.4 16 Unknown Command

77 7.645878600 e8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV IND

78 7.751411000 e8:dd:6e:e5:¢c5:78 Bluetooth LE 42 ADV_IND

79 7.854157600 e8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV IND

86 7.957118000 e8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV IND

81 8.667120000 e8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV IND

82 8.172869000 €8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV_IND

83 8.282654000 e8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV IND

84 8.391436000 e8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV_IND

85 8.4967336000 e8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV_IND

86 8.602004600 e8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV IND

87 8.708798600 e8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV IND

88 8.8149506600 65:65:62:73:69:6b:1IEEE 862.15.4 16 Unknown Command

89 8.815745000 e8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV IND

90 8.921613000 e8:dd:6e:e5:¢c5:78 Bluetooth LE 42 ADV_IND

91 9.828500000 e8:dd:6e:e5:¢5:78 Bluetooth LE 42 ADV IND

e B2 0L 125620000 o0 dd i fosoSachiall Rlustooth LB P B TV 777, S—

b Frame 76: 16 bytes on wire (128 bits), 16 bytes captured (128 bits) on interface ©
b IEEE 802.15.4 Command, Dst: 65:65:6273:69:6bff: ff

FEIXIEN)

P860 03 oc ff ff ff ff ff 6b 69 73 62 65 65 21 93 86

Better error handling
Killing off opened processes better
Testing on Windows

Enforcing range & type in Ul

Projects we've already started converting to extcap, or

which we plan to use extcap in

- Bluetooth sniffing hardware designed by Mike
Ossmann

. Bluetooth sniffing is pretty hard - you can't sniff it
using commodity Bluetooth hardware

- Allows for baseband capture of Bluetooth and

Bluetooth LE

Ubertooth One

*“an 000000000
v — n

Iy
-IHHHH-I'-FIIIJJ. -] _'F.,

» Presents stream of radio data to the OS
- 'Drivers" written in LibUSB, a userspace interface
« Code on OS looks for start of Bluetooth frames

- Able to generate pcaps but not emulate a device

* This is classic Bluetooth

Ubertooth One Bluetooth Low Energy

- BTLE/Smart/4.0 is way simpler than classic BT

- Which means we can actually sniff it!

- Used in some interesting places

Ubertooth One Bluetooth Low Energy

. B

'LE / Smart / 4.0 is way simpler than classic BT

- W

nich means we can actually sniff it!

- Used in some interesting places

I'M NOT PICKING ON
THESE VENDORS GOSH
IT'S AN EXAMPLE

* T

Ubertooth One BTLE: extcap

» ~100 lines of Python

- 90 of that is handling getopt(!)
- Wrapper around existing PCAP support

» 802.15.4 sniffer, OSHW

» Interfaces over Bluetooth SPP/RFComm or CDC-
ACM serial

- Presents to OS as a USB attached serial, definitely

not a network device

Kishee

8
|
g
a
-

e

L

- dL 0 R

- - e

. Simple (relatively) python script using PySerial talks
the Kisbee protocol

- Already had support for writing to pcap files
(shoehorned via Scapy)

- Protocol parser for Kisbee about ~350 lines of

python

Throw some ArgParser code on to handle the
extcap arguments
Do some validation of serial interfaces

Accept --fifo instead of --file

Add some pcap.flush() calls

That's it! Less than 100 lines of changed code!

Darpa Cyber Fast Track funded, Mike Ossmann /
Great Scott Gadgets principle

Multiple wired phy-layer capture devices using a
common USB3 control board

First open-source USB3 stack (as far as we know)
Multiple network-y devices, but not presented as

network interfaces

Daisho Passthrough Taps

- Gbit Ethernet

- USB3

- HDMI

» RS232

- SDR? Maybe in the future...

.'J?;'.zi
P L

H B bH NI

S VTS FUS PR ST SN

PRE-=RELEASE
DOLNOE NANUEACTHRE

I
=L
O
o
=
D
C
-

» Captures phy-layer data from different types of
interfaces

» Wireshark already has some USB decoders, and of
course Ethernet

. Lets us plug USB3 dumper code straight into

Wireshark with pipes instead of huge pcap files

Antenna + Digitizer + Processing

All the digital signal processing is done on the host
computer, not in a dedicated IC

Able to decode any protocol it's able to receive... in
theory

Very expensive in terms of power and compute

resources, but very flexible

- SDR hardware used to be extremely expensive and
rare

- Recently (in the last 6 months) it's become nearly a
commodity

. Software is lagging but will soon catch up now that

hardware is readily available

Mike Ossmann / Great Scott Gadgets is making a
ow-cost high-flexibility SDR

Herald of more work in SDR

Very difficult to make a SDR work like a network
interface, but now we don't have to

30MHz to 6GHz (!), 20MHz samples

In beta now, ~$400 when released

$20 DVB tuner

Can return proper |Q data

60MHz to 2.2GHz, with gaps

Kind of crappy, but REALLY REALLY cheap
Sufficient to capture a LOT of protocols previously

not accessible with cheap hardware

RTL SDR

DVB-TFM DAB

Kickstarter, shipping w/in weeks
300MHz to 3.8GHz

40MHz capture bandwidth (!!)
$400

BladeRF

OSS SDR radio software

Designed as multiple pluggable blocks

"Trivial" to chain decoder blocks and export to a
pcap file

If it's a pcap file, we can turn it into a pipe

Student project in works to demonstrate 802.11 via

GnuRadio, connected to Wireshark

ADS-B / ACARS airplane data
802.11 Wi-Fi

802.15.4 Zigbee
POCSAG/FLEX pager networks

Satellite comms

If it talks wireless in packets, it's a target

Simple config grammar to build Uls

Easy to write tools

We'll be coordinating a patch to git soon after the
con once we do a little cleanup

Anything that isn't a kernel netif should work through

extcap

