Softening the Network: Virtualization's Final Frontier

Steve Riley

Technical Director, Office of the CTO
Riverbed Technology
steve.riley@riverbed.com
http://blog.riverbed.com

Abstractions We've Seen

virtual memory

virtual disk volumes

virtual machines

→ the *illusion* of a thing

abstraction

no re-programming

sometimes is disruptive

VM-1 | VM-3

VM-2 | VM-4

PM-1

VM-1 (VM-3)

VM-2

PM-2

meets needs

provisioning

moving

snapshotting

roll back

New?

crude

less crude

less crude

limitations

n < ∞

topology

static

interesting

interesting +

interesting +?

interesting +??

interesting +!!!

insane;)

limitations

as before

+ not cloudable

operational abstractions aren't useful

VM-1 | VM-3

VM-2 | VM-4

PM-1

VM-2

MAC? IP? ACL? state?

PM-2

limitations

topology mandates/constraints

no overlapped addresses

slooooow to change

+ not cloudable

requirements

decouple V from P

V looks like P

V allows units of operation

Software Defined Networking (*)

* One popular, but not necessarily universal, definition

application application application application application tier network network tier

application application application application application tier control plane platform control OpenFlow forwarding plane

forwarding plane

relatively "dumb"

does what it's told

R.I.P., RIP **OSPF** IS-IS &c.

control plane

centralized

end-to-end view (not hop-by-hop)

programmable

naturally multitenant

maintains state

virtual server

virtual network

	Datapath	Consistency
Virtual server	CPU memory device I/O nanosecond operation	self-contained
Virtual network	address contexts	all-port knowledge N instances of N states consistency on all paths timely distribution

	Datapath	Consistency
Virtual server	CPU memory device I/O nanosecond operation = complexity at speed	self-contained
Virtual network	address contexts	all-port knowledge N instances of N states consistency on all paths timely distribution = complexity at scale

The Virtual Network

decoupled from h/w

independent from others

delegated control

ephemeral

SDN (*) is a useful tool

is SDN (*) a requirement?

How does Alice talk to Bob?

vAPI:

"I need a virtual L2-L3 network with these properties..."

vSWITCHes in x86 boxes determine optimal path

OPENFLOW:

"Hardware, plumb the following..."

one flow, two VMs, separate hypervisors

	Throughput	Recv CPU	Send CPU
Linux bridge	9.3 Gbps	85%	75%
OVS bridge	9.4 Gbps	82%	70%
OVS-STT	9.5 Gbps	70%	70%
OVS-GRE	2.3 Gbps	75%	97%

aggregate, four VMs, two hypervisors

	Throughput	CPU
OVS bridge	18.4 Gbps	150%
OVS-STT	18.5 Gbps	120%
OVS-GRE	2.3 Gbps	150%

possibilities

security application

QoS application

WAN op application (*)

* hard: distributed cache and symbol vocabulary

on-demand VPN/C

infrastructure → code

network → code

decoupled and delegated

physical L2-L3

logical L2-L3 L4-L7 services

x86

x86, really?

complex → much CPU

FW/LB use CPU at flow start

optimized stacks 1 performance

1 upgrade certainty

distinct security forwarding shaping priority

• • •

outcomes

working multitenancy

isolated addressing

programmable

independent and ephemeral

virtual IP virtual MAC

route my packets/frames without collisions

move v-net without changes

tear down when finished

separately alter physical and virtual topologies

consider: on-demand HA/DR

consider: on-demand HDAR

SDN (*) manages state

abstractional consistency

(mature orchestration?)

servers

disposable horsepower

networks

disposable pathways

	Datapath	Consistency
Virtual server	CPU memory device I/O nanosecond operation = complexity at speed	self-contained
Virtual network	address contexts	all-port knowledge N instances of N states consistency on all paths timely distribution = complexity at scale

	Datapath	Consistency
Virtual server	CPU memory device I/O nanosecond operation = complexity at speed	self-contained
Virtual network	address contexts	all-port knowledge N instances of N states consistency on all paths timely distribution = complexity at scale

easy familiar

point solution ideas

Tagging	Segmentation, not isolation	
	Same address in "both" worlds	
	Hardware has to understand	
	No mobility	

Tagging	Segmentation, not isolation Same address in "both" worlds Hardware has to understand No mobility
Address mapping	Like NAT: update address in place Multiplex large space into small: how? Virtual-to-virtual: physical "punch"

Tagging	Segmentation, not isolation Same address in "both" worlds Hardware has to understand No mobility
Address mapping	Like NAT: update address in place Multiplex large space into small: how? Virtual-to-virtual: physical "punch"
Encapsulation	Or tunnels, or overlays (sigh) Worlds can be totally distinct Different forwarding for V and P Strong isolation: no V on P w/o bridge

PA demux VA	payload
-------------	---------

	Datapath	Consistency
Virtual server	CPU memory device I/O nanosecond operation = complexity at speed	self-contained
Virtual network	address contexts	all-port knowledge N instances of N states consistency on all paths timely distribution = complexity at scale

programmability and cloudability

hard scary

innovative advancements

Resources

networkheresy.com
packetpushers.net
blog.ioshints.con
sdncentral.com

Thanks for coming!

Steve Riley

Technical Director, Office of the CTO
Riverbed Technology
steve.riley@riverbed.com
http://blog.riverbed.com