&

Why is crypto so hard to get right? h

SHARKFEST 13

Wireshark Developer and User Conference

Ron Bowes & (
— @iagox86 | ‘
— http://www.skullsecurity.org

— ron.bowes@leviathansecurity.com

Security consultant for Leviathan Security

Group
Founder/president of SkullSpace, Winnipeg’s
hackerspace

Rockclimber

— The best way to improve your self confidence is
to hang 1000ft in the air — from an anchor you
built yourself!

* This is probably more common in California, but I'm
from the prairies!

» History of crypto attacks

» A bunch of examples, with proofs of concept
— Key re-use
— Hash length extension
— Padding oracle

* Some proposed solutions

* In my opinion, crypto is one of the most important
technologies in the modern world, if implemented

correctly
» Crypto implementation is hard

» | decided to teach myself attacks by writing tools

— Before | knew it, | had enough to make an interesting
talk!

» The four stages of competence:

— Unconscious incompetence - \WWhen you don't know how
bad you are or what you don't know.

— Conscious incompetence - \When you know how bad you
are and know what steps you need to take to get better.

— Conscious competence - When you're good and you know
it (this is fun!)

— Unconscious competence - \When you're so good you
don't know it anymore.

* | went to help people go from Unconscious
incompetence to Conscious incompetence!

* Source:
http://happybearsoftware.com/you-are-dangerously-

bad-at-cryptography.htmi

 One more quote from the page, then 'l move on:

"Cryptography is perilous because you get no
feedback when you mess up. For the average

developer, one block of random base 64 encoded bytes is
as good as any other."

"You can get good at programming by accident. If your
code doesn't compile, doesn't do what you intended it to or
has easily obvervable [sic] bugs, you get immediate
feedback, you fix it and you make it better next time."

"You cannot get good at cryptography by accident."

Another great talk: "If You're Typing The Letters A-
E-S Into Your Code, You're Doing It Wrong"

— http://lwww.cs.berkeley.edu/~daw/teaching/cs261-f12/
misc/if.htmi

— Hey look, it's berkeley!

— Same information, same conclusion, as both the
previous post and this talk!

— Afun, interesting read! One of my first forays into crypto.

DECIDES TO DOCUMENT THE HISTORY OF
JCRYETD & B
(g '

-

o
l!lvl‘ii

o~ ’

‘l’ EAD

e ——

The somewhat accurate

HISTORY OF CRYPTO

c. 75 BC: Caesar cipher

» Shift cipher
» 25 possible encodings (26, if you count ‘0’)
» Trivially bruteforced

{8l

J uijol nz gsjfoet bsf uszjoh up ljmm nf! *’k““ oo w.%

“54 ~

v

mpm

Caesar — World War Il: No developments

File: 1359396104253 jpg{17 KB, 220x293, 220px-EnigmaMachinelabeled jpg)
™ Anonymous (ID: kv30XfOr) 01/28/13(Mon)13:01:44 No 454378465

Hey 4chan, | need help wnting a paper! Were there any important developments in
cryptography between the Caesar Cipher and the Enigma Machine?

™ Anonymous (ID: niji5aT4) 01/28/13(Mon)13:02:33 No.454378583

No
The End

You're welcome

[Return] [Catalog] [Top] [Update] [T Auto)

World War Il: Enigma Machine

d

an/

A LOT OF INFORMATION IS BEING LEAKED OUT

HOW'S THE ENIGMA PROJECT WORKING? THROUGH CRIBS .

Let’s get more modern

1970s: DES was invented!

A symmetric-key block cipher

» Message could be decrypted by the intended
recipient and everybody who's stolen the key

6 E(“This cereal sucks”)
WA

N
“Eve” (aka, guy who stole the key)

“Alice”

llBob”

Still 1970s: Along came DH and RSA

» Now both parties have to exchange keys with
“Eve” (or each other) before they can communicate

llBob”

1990s: Certification Authorities

» Now you can see if any of 100s of companies thinks
the “Bob” is actually “Bob”

- o Keve Is this K, ?
4 g

m—— - Sure whatever
Eve “Alice”

IIBOb”

* While we're talking about Goatse...
» RC4 w/ 24-bit IV

» Using RC4 all kinds of wrong led to total
compromise

2008: github (and other “Web 2.0” stuff)

* A new place for people to post private keys,
passwords, and other confidential data

* These days, encryption is rarely broken directly

* |t's broken by...

— Implementation error (developer mistakes)

— Operator error (end-user mistakes)
 Document, key, codebook theft/leakage

— Stupidity (aka, CAs)
— Side-channel attacks

* The rest of this talk will be about indirect ways to
break state-of-the-art crypto!

=)
‘

IMPORTANT CONCEPTS

* The act of obscuring data using a secret key, such
that only the intended recipient — and anybody else
who manages to steal the key — can read it

Encryption: Block cipher

* Plaintext is broken into 8- or 16-byte blocks, each is
encrypted individually

* Various “modes of operation” can be used to ensure
that the ciphertext isn’t repeated

Plaintext Plaintext Plaintext
L L\ \J
_ Block Cipher Block Cipher Block Cipher
Key > Encryption Key > Encryption Key > Encryption
L L L
Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

Encryption: Block cipher modes of operation
- ECB

» “Electronic codebook” mode encrypts each block
individually:

Plaintext Plaintext Plaintext

| . L1 1
\J A L

Block Cipher Block Cipher Block Cipher

Key > Encryption Key * Encryption Key * Encryption
' v L

; | L1 i1

Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

* This leads to problems like
the famous “ECB Tux” image:

Encryption: Block cipher modes of operation
- CBC

+ “Cipherblock Chaining” feeds the output from each block into the input of
the next:

Plaintext Plaintext Plaintext
initialization Vector (IV)
A A
Block Cipher Block Cipher Block Cipher
Key * Encryption Key * Encryption Key * Encryption
L A '
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

* This is much better than CBC, but also has some serious problems
« We'll talk about this in detail when we talk about padding oracles

» The ‘input’ into an encryption function

» Designed so that the same data encrypted with the
same key doesn't generate the same ciphertext

- We'll see why that's a problem

Hashing

 Reducing a large amount of data to a small amount
» Works similarly to a block cipher, as we'll see

The maost merciful thing in the world, | think, is the inability of the
human mind to correlate all its contents, We Gve on a placid island of
ignorance in the midst of biack seas of infinity, and it was not moeant

that we should voyage far. The sciences, each straining in its own

direction, have hitherto harmed wus ittie; but some day the piecing
ogether of dissociated knowledge will open up such terrifying vistas of
eality, and of our frightful position therein, that we shall either po mad
from the revelation or flee from the deadly light into the peace and
safaty of 2 new dark age.

b o

MD5

Now, what you all came here for...

ATTACKS

fuck yeah

KEY RE-USE IN BLOCK
CIPHERS

» Using the same key/IV to encrypt two messages =
fail
- This affects:
— DES (all modes)
— 3DES (all modes)
— AES (all modes)
—RC2
— RC4
—RC5
— And... well, everything else I've tested

 This attack works if:

— Any normal cipher is used (block or stream)
* Note that there are better ways to attack stream ciphers

— The attacker controls at least [blocksize] bytes of the
plaintext, preferably at the beginning

* Note that only bytes after the attacker-controlled text can be
decrypted
— The same key and |V are used each time the encryption
happens

* Note that some ciphers — like ECB — don’t have Vs, so this
attack cannot be prevented

* Here's our “oracle™

def do crypto(prefix)

v e

OpenSSL: :Cipher: :Cipher.new("DES-ECB"

- F - 2k ok P2 =t
- A YL
s 5

* Note that we're using “DES-ECB” - this attack will work, as-is, with
every block and stream cipher in almost every “mode”

« ECB is somewhat special because it can'’t be fixed
— We'll talk about ECB, CBC, etc. when we talk about padding oracles

* Here's the output from do_crypto(“A” * 16):

P1 A A A A A A A A Two blocks ijust
“A”s (note that

C, \x74 \x31 \xel \xfO \xc6 \xlb \x35 \x11 the ciphertext is

Pz |A| |A| |A| |A| |A| |A| |A| |A| the Same)

C, \x74 \x31 \xel \xfO \xc6 \x1b \x35 \x11

P3 |T| |h| |i| |S| 11 |i| |S| 11 The rest Of the

tri ted

G, W35 W3 Wb W27 b6 s \da Wwoc T

P4 |S| |OI |ml |e| 11 |t| |e| |S|

C, \xbl \xO0e \xdf \x42 \x93 \xe8 \x17 \x42

P 't' ' 'd' 'a’ 't' 'a’ \x02 \x02

(off \xeO \x6f \xcf \xcO \xcf \xfe \x87 \x66

Key re-use in block ciphers: example [2]

* Here’s the output from do_crypto("A™ * 7):

=Y

|A| |A| |A| |A| |A| |A| |A| ITl
\xea \xca \x59 \x30 \x3d \x8b \xe6 \xOf & GOAL

OO YV N6 v O v O vV|Io6HO v
o IS S w w N N

=Y

lhl lil ISI 11 lil ISI 11 ISI
Stuff
\xf2 \xaa \xbl \xfb \x54 \xb4 \xb5 \x87 That
lol lml lel 11 ltl lel ISI ltl We
Don’t
\x34 \x87 \x06 \x80 \x9a \xcc \xad \x43 Care
'd' a 't! 'a’ \x03 \x03 \x03 About
\xd3 \x71 \x2a \xf5 \x79 \x10 \x25 \xea
IAI IAI IAI IAI IAI IAI IAI ITI

\xea \xca \x59 \x30 \x3d \x8b \xe6 \xOf

Key re-use in block ciphers: example [3]

Goal:
P1 IAI
C, \xea

\xca

IAI
\x59

IAI
\x30

IAl
\x3d

IAl
\x8b

IAI
\xeb6

|Tl

\xOf

< We're trying to
find a match for
this

* |t's pretty trivial to guess a single byte...
— [A.’Z +a../Z] do |c| do_crypto(‘AAAAAAA’ + ¢); end

IAI
\x1c

\xea
IAI
\x5a

IAI
\x32

\xca
IAI
\x3c

IAI
\x22

\x59
IAI
\x17

IAI
\x39

\x30
IAI
\x25

IAI
\xb7

\x3d
IAI
\xc8

IAI
\x99

\x8b
IAI
\xOf

IAI
\x73

\xeb6
IAI
\x68

Note: I’'m only showing the
first block or two

ISI
\x42

ITI
\xOf
IU|
\x3f

< Nope

< Oh hail

< Nope

Key re-use in block ciphers: example [4]

* Here’s the output from do_crypto("A” * 6):

P1 |A| |A| |A| |A| |A| |A| ITI Ihl
C, \xcb \x7a \x74 \xd0 \x38 \x45 \xbf \x21 & GOAL
P lil ISI 11 lil ISI 11 ISI IOI
Stuff
C \xf9 \x8¢e \xcd \xdf \x49 \xfO \x86 \xcb That
P lml lel 11 ltl lel lsl ltl 11 We
Don’t
C \ X700 \x8c \xcO0 \xid \xe5 \xf2 \xdc \x01 Care
P 'd' 'a’ 't! 'a’ \x04 \x04 \x04 \x04 About
C \xb4 \x74 \xfc \ x99 \xd9 \xbe \xd2 \x70
P IAI IAI IAI IAI IAI IAI ITI lhl
C \xcb \x7a W74 \xd0O \x38 \x45 \xbf \x21

Key re-use in block ciphers: example [9]

P1 |A| |A| |A| |A| |A| |A| |Tl |h| é We’re trylng to
C, \xcb \x7a W74 \xd0 \x38 \x45 \xbf \x21 E:‘I‘: 2 EHED]
* Once again, we're guessing a single byte: Note: I'm only showing the
first block or two
— ['A’..Z +‘@’..”7’] do | c| do_crypto(‘AAAAAAT’ + ¢); end
1 IAI IAI IAI IAI IAI IAI ITI Igl
C, \xbb \x48 \x96 \xa3 \xb9 \xb5 \xc4 \x32 < Nope
1 IAI IAI IAI IAI IAI IAI ITI lhl é
h hail
C, \xcb \x7a \x74 \xdO0 \x38 \x45 \xbf \x21 Oh hai
1 IAI IAI IAI IAI IAI IAI ITI lil
C, \x79 \xc2 \x04 \x11 \x64 \xdO \xae \xc2 < Nope

» We continue likewise till we've decrypted the entire
packet

 What's going on?
— We're forcing the first unknown byte to be on a block
boundary, then guessing it

— We can guess any character in 256 guesses, as long as
we know all the characters before it

Key re-use in block ciphers: A tool!

* | wrote a tool called “Prephixer” to implement this
attack

— https://lwww.github.com/iagox86/prephixer
* Let's do a demo!

e Use different initialization vectors (IVs) when
encrypting data

* |f possible, use a different key (not always
possible)

* |f you’'re using ECB mode.... WHY ARE YOU
USING ECB MODE!?

HASH LENGTH
EXTENSION ATTACKS

fuck yeah

» This is why | became interested in crypto attacks

» The basic idea: most hash algorithms (before
SHA3) can “pick up where they left off”

» What's that mean for security?
— Let’s find out!

This is an attack where the following happens:
Server calculates the following value:

verifier = H(secret || data)

The “Bad” operations
areinred

Then sends that verifier and data to the user

Later, when the user sends the data back, it uses
the verifier to ensure the data hasn't changed

throw error ()
else

if (H(secret || new data) != verifer)

trusted operation(attacker data)

How hashing works...

Let's look at an example...

SHA1l ("The most merciful thing in the world, I think, is the inability of
the human mind to correlate all its contents. We live on a placid island
of ignorance in the midst of black seas of infinity, and it was not meant
that we should voyage far. The sciences, each straining in its own
direction, have hitherto harmed us little; but some day the piecing
together of dissociated knowledge will open up such terrifying vistas of
reality, and of our frightful position therein, that we shall either go
mad from the revelation or flee from the deadly light into the peace and
safety of a new dark age.")

First, the string is broken into 64-character blocks (for SHA1):

"The most merciful thing in the world, I think, is the inability "
"of the human mind to correlate all its contents. We live on a pl"
"acid island of ignorance in the midst of black seas of infinity,"
" and it was not meant that we should voyage far. The sciences, e"
"ach straining in its own direction, have hitherto harmed us 1litt"
"le; but some day the piecing together of dissociated knowledge w"
"ill open up such terrifying vistas of reality, and of our fright"
"ful position therein, that we shall either go mad from the revel"
"ation or flee from the deadly light into the peace and safety of"
" a new dark age."

How hashing works

 Padding is added to the last block:

"The most merciful thing in the world, I think, is the inability "
"of the human mind to correlate all its contents. We live on a pl"
"acid island of ignorance in the midst of black seas of infinity,"
" and it was not meant that we should voyage far. The sciences, e"
"ach straining in its own direction, have hitherto harmed us litt"
"le; but some day the piecing together of dissociated knowledge w"
"ill open up such terrifying vistas of reality, and of our fright"
"ful position therein, that we shall either go mad from the revel"
"ation or flee from the deadly light into the peace and safety of"
" a new dark age.\x80\0\0\0\0\O\O\O\O\O\O\O\O.......... \0\x12\x80"

 The padding is equal to a 1-bit followed by a
bunch of zero bits (“x80\0\0\0\0....") followed by the length in bits

* The last eight bytes are equal to the length of the string (0x250
bytes) in bits (0x1280 bits)

How hashing works

Each block is hashed individually, and its output is fed into the next block

"The most merciful thing in the world, I think, is the inability "

3be731c7 5880ab49 5d90cOcd df295189 b3c91449

"of the human mind to correlate all its contents. We live on a pl"

58ec922f bdeebeec 699db098 a378f£875 2b29d697

"acid island of ignorance in the midst of black seas of infinity,"

c55bc6a3 b26d5dd0 96166093 5d73c256 7£357a83

"ation or flee from the deadly light into the peace and safety of"

845b75f7 403al814 30eelc70 8a229eab c88c00d9

" a new dark age.\x80\0\0\0\0\0\0\O\O\O\O\ON\O.......... \0\x12\x80"

ed8873cl 07d882b7 b6fcbbcl 9a272d6l 4cf9e’ee

The output of the last block is our hash

In other words, the final hash is made up of
the entire state!

Hash extension: We’re almost there!

« What if we add another block, after the padding?

"ation or flee from the deadly light into the peace and safety of"

845b75f7 403al814 30eelc70 8a229eab c88c00d9

" a new dark age.\x80\0\0\0\0\0\0O\O\O\O\O\ONO.......... \0\x12\x80"
ed8873cl 07d882b7 b6fcbbcl 9a272d61 4cfY9e7ee

"Hello? Yes, this is dog." (+ implicit padding)

37a780c2 elf8a3e9 £99a7561 £12c9945 £0d4d82bl2
» What good is that?

« Because 100% of the state was included in the final hash -
ed8873cl 07d882b7 b6fcbbcl
9a272d61 4cf9e7ee - we could add more
data to the plaintext and calculate a new hash
without knowing the plaintext!

YES, THIS IS DOG

» Let's say that again, to make sure we're clear: we
just calculated the checksum for:

— (original text || padding || “Hello? Yes, this is dog.”)

o Kn OWi ng On |y: “l|” is the “concatenate” operator in crypto.

@mak_kolybabi yells at me if | don’t use it.

— The output of the original hash function:
* ed8873cl 07d882b7 b6fcbbcl 9a272d61l 4cfY9%e’ee

— And the text we wanted to add!
» We did not need to know original_text!

Hash extension: Applying it

* Flickr used to have an AP| something like this:

— message = SHAI (shared secret || commands) + commands
* \Where shared secret = the user's key (aka, a password)
- Example:

— message = SHAl ("secretkey" + "name=ron") + "name=ron"

— message = "\x0e\x78\x45\x47\x5d\xbe\x78\x41\x54\xel\x55" +
"\x36\x5d\xff\xf4\xe5\x4b\x15\x66\xa8name=ron"

“\x0e\x78\x45\x47\x5d\xbe\x78\x41\x54\xel\x55\x36\x5d
\xf£f\xf4\xe5\x4b\x15\x66\xa8name=ron”

Intercepted!

for
“Ron” (“'2 S
@ “Eve” “Flickr®

» Now, Eve has a message and its associated hash.
What can he use it for?

» Remember, because of padding, this is what's
actually hashea:

"secretkeyname=ron\x80\0\0\0\0\0\0\0\0\0O\O...\0\0\0\0O\0O\x88"

0e7845477 5dbe7841 54el15536 5dfff4e5 4bl566a8

» But walit... as we saw before, this is the entire state
of the hash! So why can't we add another block?

Hash extension: Applying it

» Let’s look at how both the evil client and the legit
server calculates that hash:

1J,0e784547 5dbe7841 54e15536 5dfff4e5 4bl566a8

&deletemyaccount=1" (+ implicit padding)

d28lac3c £91dbb96 Oecl2c4d4e 0e5d73bd 91be6fl0

Hash extension: evil client

< Eve writes
this
program

Looks right!

S gcc -0 test test.c -Issl -lcrypto
S ./test
d281ac3cf91dbb960ec12c4e0e5d73bd91be6bf10

Hash extension: Evil client -> legit server

» Eve then sends the following to the server:

\xd2\x81\xac\x3c\xf9\x1d\xbb
\x96\x0e\xcl\x2c\x4e\x0e\x5d

New signature

\x73\xbd\x91\xbe\x6f\x10pame=ron

\x80\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00

Original text

Original padding

\x00\x00\x00\x00\x00\x00\x88&del

etemyaccount=1

New (appended)
data

=~

Hash extension: Legit server

* The legit server prepends the secret key to the data
Eve sent, and calculates the hash:

1.9.3p194 :002 > require 'openssl'

=> true

1.9.3p194 :004 > Digest::SHAl.hexdigest ("secretkey" + "name=
ron
\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x88&deletemyaccount=1")

=> "dZ28Tac3cE91dbb%60ecIZc4e0e5d73bd%Tbe6EI0"

S gcc -0 test test.c -Issl -lcrypto
S ./test

d281ac3cf91dbb960ec12c4e0e5d73bd91bebf10

It's amazingly difficult to write these attacks by hand

— | never fail to mess up the number of zeroes, or forget to convert the length to bits, or
screw up endianness

Luckily, you don’t have to! | wrote hash_extender to take care of that

hash_extender supports the following hashes:
— MD4, MD5, RIPEMD160, SHA, SHA1, SHA256, SHA512, Whirlpool

The following hash types are more difficult to extend, because the
state is truncated before being used:

— SHA224, SHA384
And, the following hash type is impossible to extend, by design,

although time will tell:
— SHA3

That was a lot of material...

* So let’s look at some cats then do a demo

* |f an attacker has access to a hash in the form of:
— H(secret + “knowndata”)

» He can trivially calculate:
— H(secret + "knowndata” + padding + anything)

Hash extension: Defense

* HMAC.
* Next topic.

, MATH
> AHEAD

PADDING ORACLES

fuck yeah

» Hash extension attacks are fairly simple to
understand — you just have to realize that hashes
can “pick up where they left off’

» Padding oracles, on the other hand, require a bit
more of a leap

» That being said, let's do it!

Not to be confused with the Oracle database...

This isn’t an attack against any particular algorithm, but against
cipher-block chaining (CBC)

Invented by Serge Vaudenay in the early 2000s, also called the
“Vaudenay attack”

A padding oracle attack occurs when an attacker has encrypted and
unknown data that he can ask a server to secretly decrypt

— The data is a block cipher (DES, AES, etc) in CBC mode
— The server doesn't give indication as to what the plaintext data is

— The returns a boolean value indicating whether the decryption
succeeded (which is based on the padding)

We already talked about padding on hashes, but
this is different

Block ciphers require the data to be padded such
that it's a multiple of the blocksize

— If the data is already a multiple, an empty block is added

t doesn’t matter what the padding s, just that it's
Known and unambiguous

_et’s look at the most common...

Padding oracles: Padding

> Typically, PKCS #7 is used, which says...

— The value of the padding = the number of bytes of
padding

 Eg (assume block size = 8 [DES, for example]):

e I I o \x03/\x03 \x03

e I I 0 W | o r I d [\x05 \x05\x05|\x05 \x05

a S s | w | o r d |[\x08 \x08|\x08 \x08 \x08|\x08 \x08|\x08

Block 1 Block 2

Now that we've looked at padding, let’s look at how
the blocks fit together

We already talked about electronic codebook (ECB)
and cipher-block chaining (CBC)

The “padding oracle attack™ is actually an attack
against CBC

Let's see why...

Padding oracles: CBC mode encryption

Plaintext Plaintext Plaintext
Inttlalization Vector (IV)
A ' '
Block Cipher Block Cipher Block Cipher
Key > Encryption Key < Encryption ey - Encryption
L ' L
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

» For any given block of plaintext, P, the corresponding
ciphertext, C,, can be calculated as:

C =E(P. ®C,.)
* In other words, you XOR the plaintext with the previous
ciphertext, then encrypt it

Padding oracles: CBC mode decryption

nitialization Vector {IV) Ciphertext Ciphertext Ciphertext
' Y ’
Block Cipher Block Cipher Block Cipher
Key - Decryption Key > Decryption Key > Decryption
- -
' L A
Plaintext Plaintext Plaintext

Cipher Block Chaining (CBC) mode decryption

- For any given block of ciphertext, C_, we can calculate the |
corresponding plaintext, P, as:
I:)n = D(Cn) ® Cn-l

* In other words, the ciphertext is decrypted, then XORed
with the previous ciphertext

Padding oracles

* S0, we have two formulas:

P =D(C)eC ,

* We can verify these make sense by encrypting and
decrypting a block:

|
® C) Decrypt the encrypted data
n-1

® Cn-l

=2

>

>

Two XORs cancel out

v U O

>

Success!

Padding oracles

* Encryption steps...

Plaintext (P) Decrypted (P')
This is the
Add padding Remove/verify padding dangerous
part
Encrypt each block Decrypt each block
Send Receive
Sender Receiver

Padding oracles

* Let's start with how this is "supposed"” to work

— Example string: "Hello World"
— P ="Hello World"

Plaintext (P) Decrypted (P')
. Remove/verify
Add padding padding
Encrypt Decrypt
each block each block
Send Receive
Sender Receiver

» Adding padding
— "Hello World" is 11 characters

— With a blocksize of 8, that means we have one full block
("Hello Wo"), and one block of 3 characters ("rld")

— Therefore, we need 5 bytes of padding

Plaintext (P) Decrypted (P')
P = “Hello World”
) Remove/verify
Add padding padding
_u ” _u ”
P, = “Hello Wo P, =“rld Encrypt Decrypt
each block each block
P =“HelloWo” | P, = “rld\S\S\5\5\5” send Receive
Sender Receiver

» P, is encrypted to become C.,

* P, is encrypted, then XORed with C,, to become C.,.

» C, and C, are combined to make C.

P, = “Hello Wo” P, = “rld\5\5\5\5\5”

®

C, = “8aec483e43027f22” | C, = “287ca837fb65e219”

C =“8aec483e43027f22""287ca837fb65e219”

Plaintext (P) Decrypted (P')
. Remove/verify
Add padding padding
Encrypt Decrypt
each block each block
Send Receive

Sender

Receiver

* The ciphertext — C — is transmitted to the (possibly

malicious) user

* |t's Important to remember that while the user can

store It and send it back to the server, the user

cannot decrypt it

C = “8aec483e43027f22""287ca837fb65e219”

Plaintext (P)

Decrypted (P')

Add padding

Remove/verify
padding

Encrypt
each block

Decrypt
each block

Send

Receive

Sender

Receiver

* At some point in the future, the user will return the

encrypted data to the server

* This is where the attack and normal usage diverge,

as we'll see

Plaintext (P)

Decrypted (P')

Add padding

Remove/verify

C'=“8aec483e43027f22""287ca837fb65e219”

padding

Encrypt Decrypt
each block each block

Send Receive
Sender Receiver

» The server breaks C' back into C', and C',

» C',is decrypted then XORed with C',

— Note: the server, at this point, doesn't know if valid data

was produced

C' = “8aec483e43027f22""287ca837fb65e219”

C', = “8aec483e43027f22"

C', = “287ca837fb65e219”

P', = “Hello Wo”

@

P', = “rld\5\5\5\5\5”

Plaintext (P) Decrypted (P')
. Remove/verify
Add padding padding
Encrypt Decrypt
each block each block
Send Receive
Sender Receiver

* The server looks at the last byte of the last block —
"\5" — and verifies that the last 5 bytes are all equal
to "\5" — otherwise, the padding is wrong

* Once padding is verified, it's removed and the

blocks are reunited

* This is all that's done to verify that

the data decrypted properly

Plaintext (P)

Decrypted (P')

Add padding

P', = “Hello Wo” P', =“rld

\5”

Remove/verify
padding

P' = “Hello World”

Encrypt
each block

Decrypt
each block

Send

Sender

Padding oracles

* And now, we're back where we started
— P'=P, as it's supposed to

P' = “Hello World”

Plaintext (P) Decrypted (P')
. Remove/verify
Add padding padding
Encrypt Decrypt
each block each block
Send Receive
Sender Receiver

* Now let's look at an example of how we can attack
this...

* Here are the first three steps again, same as last time

P-= ”HeIIQ World”

P, = “Hello Wo”

P, = “rld”

P, = “Hello Wo”

P, = “rld\5\5\5\5\5”

®

Plaintext (P)

Decrypted (P')

C, = “8aec483e43027f22”

C, = “287ca837fb65e219”

Remove/verify

C = “8aecd483e43027f22""287ca837fb65e219”

Add padding padding
Encrypt Decrypt
each block each block
Send Receive
Sender Receiver

* This time, the data Is sent to a malicious user, such

as Eve

* As before, Eve cannot decrypt this. But she wants

to, and will find a way!

C =“8aec483e43027f22""287ca837fb65e219”

Plaintext (P)

Decrypted (P')

Add padding

Remove/verify

padding

Encrypt Decrypt
each block each block

Send Receive
Sender Receiver

* Eve is going to focus only on the second half of the

cipher, C, (note that this can apply to any block)
C', = “287ca837fb65e219”

» She generates a brand new block for C',, then

prepends it to C, to form C', —

C', = “0000000000000000” | C', = “287ca837fb65e219”
Remove/verify

’\? o Add padding padding

))

Used all zeroes for W

convenience — not Encrypt Decrypt
each block each block

necessary

Send Receive

Receiver

C' = “0000000000000000""287ca837fb65e219” Sender

* Now, what happens when the server tries to decrypt

this new C'?

» Remember, C', is XORed with C', after it's

decrypted

C' ="0000000000000000287ca837fb65e219"

C', ="0000000000000000"

C', ="287ca837fb65e219"

P', = [garbage]

@

P', = [garbage, kinda]

Let's take a closer look at
P, ...

Plaintext (P) Decrypted (P')
. Remove/verify
Add padding padding
Encrypt Decrypt
each block each block
Send Receive
Sender Receiver

Padding oracles

* Recall our decryption formula:

P.=D(C)®C_ ,
P,=D(C',) e ('

C'; ="0000000000000000 " C', ="287ca837fb65e219"

» So C', is being decrypted in the
usual way, then XORed with C',
instead of with the actual C,!

* Instead of undoing the original
XOR, it's adding another XOR layer:

P',=P,®C, ®C,
P, 1=P,

Plaintext (P)

Decrypted (P')

Add padding

Remove/verify
padding

Encrypt
each block

Decrypt
each block

Send

Receive

Sender

Receiver

Padding oracles

* To put it another way...
* Original decryption:

P =D(E(P,®C_,))®C_,
Pn =P Cn-1 @ Cn-1
P =P

* New decryption:

P =D(E(P,®C_ ,))eC ,
I:)n =P Cn-1 ® C'n-1

...can't reduce any further

So now we have this formula:
P,=P,®C,®C,

But what's it mean?

The first thing we want to do is re-arrange it

because we want to solve for the
original plaintext, P, :

P,=P',®C, ®C',
This Is legal, because
A®B=B®A

Plaintext (P) Decrypted (P')
. Remove/verify
Add padding padding
Encrypt Decrypt
each block each block

Send

Receive

Sender

Receiver

P,=P,®C, ®C,

Here's that formula again. And here's what the terms mean:

P, = The original plaintext value (our goal)

P’, = The value the server calculates (mostly a garbage string)

C, = The previous ciphertext block (known to us)
C', = The ciphertext block chosen by the attacker

(“0000000000000000”)

» We control C',, and we know C., but
what about P, and P",?

 We have an equation with two
unknowns!

— Ordowe?

Plaintext (P)

Decrypted (P')

Add padding

Remove/verify
padding

Encrypt
each block

Decrypt
each block

Send

Receive

Sender

Receiver

P’,=P,®C,®C,

Let's focus on P’,, and move on to the next step: Remove/verify

padding

If P', decrypts to:

— "[garbage]\x00" < Bad padding

— "[garbage]\x01" < Good padding

— "[garbage]\x02" < Bad padding (probably®)
— "[garbage]\x03" < Bad padding

— "[garbage]\x04" < Bad padding

— "[garbage]\x05" < Bad padding

By definition — for this attack — the server
tells us when the padding is good or bad

Let's ignore the rare case where
the string happens to end with
\x02\x02 or \x03\x03\x03 or ...

Plaintext (P)

Decrypted (P')

Add padding

Remove/verify
padding

Encrypt
each block

Decrypt
each block

Send

Receive

Sender

Receiver

P’,=P,®C,®C,

« What's this mean for our attack?

* As soon as the padding is correct, we know the last

byte of the new plaintext (P",))

* That's big. That's HUGE!

— Suddenly, our equation for the last
byte of P, only has one unknown!

— All we have to do Is send 256 values
for the last byte of C',, and we're
eventually going to get valid padding

Plaintext (P)

Decrypted (P')

Add padding

Remove/verify
padding

Encrypt
each block

Decrypt
each block

Send

Sender

» Let's only focus on the last bytes:
Pz[n] = P'z [n] ® C1[n] ® C'1[n]

* To define everything again...

* P,[n] = The last byte of plaintext (the value we want!)

* P',[n] = The last byte of what the server ends up decrypting

(proper padding = "\x01")
 C,[n] = The last byte of the original first block
» C',[n] = The last byte of the new first block

- We can now calculate P,[n]!
P,[n] =1 Cy[n] © C'y[n]

Plaintext (P)

Decrypted (P')

Add padding

Remove/verify
padding

Encrypt
each block

Decrypt
each block

Send

Receive

Sender

Receiver

Padding oracles

* So, to summarize:

— Choose a new block, which we call C', and prepend it to the block you're trying
to decrypt:

C' = “0000000000000000" | C,="“287ca837fb65e219”

— Change the last byte of C’ until you stop getting a padding error:

C' = “0000000000000026" | C,="“287ca837fb65e219”

— Plug it into the formula:
P,[n] =P [n] ® C,[n]®C'; [n]
Pz[n] = 0x01 © 0x22 © 0x26

— And solve!

— Recall:
P,[N] = 0x05 , = “rld\5\5\5\5\5”

» By having the server tell us when the last byte of the
decrypt block is right, we can trivially decrypt and
encrypt it using only the XOR operation

* The last byte can be set to \x02, and the second-
last byte can be guessed using the same formula

* The last and second-last bytes can be set to
\x03\x03, and the third-last byte can be guessed
using the same formula

» ...and so on, until the whole block is decrypted

Introducing: Poracle

 Like all these attacks, | wrote a tool
* This one’s called “Poracle”

» How do you prevent padding oracles?
— HMAC!

» By prepending an HMAC hash to the encrypted
data — and validating it before the decryption is
performed — you can check if anybody has
tampered with the hash!

* You can also prevent this by using a block cipher
mode of operation other than cipher-block chaining
— eg, counter mode, output feedback, plaintext
feedback, etc.

Almost there!

SOLUTIONS

» This isn’t always possible

» When you can, give an index, a session, or
something like that, rather than letting an attacker
store state

Or, to put it another way...

“The cryptographic doom principle”

Calculate a HMAC and send it with the encrypted
data

— Validate the HMAC before attempting to decrypt

Alternatively, use authenticated encryption, for
example, "GCM Mode"

Coming soon: CAESAR

— CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness

“The cryptographic doom principle”

IEYOUPERFORMANY(CRYETOGRAPHIC
OPERATIONS BEFORE VERIEYING\THE HASH

=N

R r@
Y NSTRUCTC
IC;

Solution #3: Never encrypt data with the
same key and IV

» Almost every cipher fails if you use the same key
and |V

 Change keys when it makes sense, and change Vs
every time

One last ski instructor, then we’re done!

ENBIIYPT TWOTHINGS WITH

THAT’S ALL!

Links + Contact info

* Me:
— Ron Bowes <ron.bowes@leviathansecurity.com>
— [@iagox86
— http://www.skullsecurity.org
— http://www.leviathansecurity.com

* Tools:
— https://www.github.com/iagox86/prephixer
— https:/lwww.github.com/iagox86/poracle
— https:/lwww.github.com/iagox86/hash_extender
— hitps://www.github.com/iagox86/unzipher

» This talk will be on https://www.github.com/iagox86 as
well

