: L) SRS e RobertBuu o s
Archptect BLu_e _Cr QSS IUe Sﬁ'ew MN ERS 54 ysi;én“ﬁﬁngrﬁéér Blue Cross Blue Sh|eld MN -

v (-w-dif,,., _,:‘ e

o Tt

o o _.-
LAY 10 " L

Setting Expectations

= This session is not about..
— An introduction to SSL encryption
— How to set up SSL decryption in Wireshark
— A detailed walk through of the SSL handshake and all the variants

= This session is about...
— What you can do when you do not have access to server keys
» Calculating server command response time from SSL, even in the cloud
» Using encrypted data to your advantage
 |dentifying application layer behavior based on SSL patterns
— Walking through real world examples using Wireshark

— Focus will be on helping you to analyze application performance more so than security
breaches, suspicious activity, etc.

A (very) Brief History of
Secure Sockets Layer (SSL)

= Used to encrypt + protect integrity of network data
— SSL 2.0 was first “public release” in 1995

— SSL 3.0 released in 1996 forming the foundation for Transport Layer Security (TLS) 1.0
(RFC 2246, 1999)

— TLS 1.0 is not backward compatible with SSL 3.0!
— Upgraded to TLS 1.1 (RFC 4346, 2006) and TLS 1.2 (RFC 5346, 2008)

= Supports a wide variety of encryption algorithms

— RSA and DSA are asymmetric (public key encrypts; private key decrypts) — used to
exchange and generate key information during the SSL handshake

— AES and 3DES are symmetric algorithms (one key encrypts and decrypts) — used to
transfer data (much faster to compute) after the SSL handshake

= TLS 1.0 or higher is recommended practice
— Many clients & systems now support TLS 1.2 which addresses some vulnerabilities

What’s so Special About the Client Key Exchange?

Client Network Server

Client Client Client Server
generates encrypts sends decrypts
pre-master using secret to secret with

secret public key server private key

Both Client and Server generate the master secret from the pre-master to
generate the session key.

Therefore, Wireshark needs the server’s private key to decrypt the client
pre-master secret to order to generate the master secret to generate the

session key to decrypt the SSL packet data!

A Tale of Two Connections

Good, we will get the client key exchange!

Source Destinanion

54 BCRSMWID ~ proxy-sb. —_- SATASIEDNIL9 [ACK] |S0qe312401140 ACk=523685151 Wine64240 Lan=0

E {5 54 BCASWMNOLL proxy-sb, Tcr 10 SATRIITIS110 [ACK] eqe2033020691 Ack=3831424904 Wineo4240 Lenwd
170 292 BCESMNIIL » s W proxy-ab. s WP v CORNECT sncrypted-thnl. gstatic.comi44d HTTP/1.1
171 I70BCRSMWNOIL v proxy-mb.. o HTTP 10 CONMECT ss!.gstatichcom:443 WTTP/1.3
n 60 proxy-mb, = BCESMNSIT & e - wr . $1ISET)IATES [ACK]) g 133 Ack=J12491378 Win=15%44 Len=0
174 60 proxy-mh, BLESMNEIL e TR 10 OLIOITIS4780 [ACK] §oqe3031424094 ALK2035020007 Wine15544 Lens0
184 192 proxy-mb, BCBSWIL & A NTTP 10 0 .1 200 Connackion #stab)ished
PSR I | fevey : 3.3 i
166 192 proay-mb, BCESWNILL N T K Fion established
%7 3 "I""'"'m i %‘ 1 Nz -4 oL e £ i) =
I 431 fitmay - Y Ty)
221 S04 pmy-uh.” - BCHSMNGLL & s T 10 led FOU)
n: $4 BCRSMNG2T e ¢ proxy-ab. o er 10 JOSSO2ILLT Ack=3851427042 Win=4240 Len~d
s un my-nb._ - BRSNS & s - o 10 Ted POUY
E e TE3e1. A5 TificE
nr uu:uuux O- U proxy-sb. e o o 10 ummnu . sq-aomznu Acs-usuao«mu-uuow-o
BCBSMEIT & e ToF 9 011001154785 [ACH] Seqe32368%5289 m-naum Win=16615 Len=0
TiSs1s = i

2 Saveas 4116, © page it Sows. Swils Sammwsy, Selis Segmst |
' .y g Namge (1 poe -n . hl-l_
J c - e - (s w4 or e b '-

QLINITIIS78S [ACK] SeqeS2368%5447 AckeT12490082 Wine17088 LenO
VIISFTISATE9 [ACK] SeqeiBSIA0066 Ack-2035021387 Win=17628 Len=0
[cr of a reassewbled FOU)

"
v |*
S

55 el

————_—r,———————

H [ACK] SeqelO3SOXIT8Y Ack=1S8351429422 Win=3364 Len-t)

Rats, the client is reusing a previous session ID and the server accepts.

What if we don’t have the client key exchange*?

= |f your SSL session reused the Session ID...
— Try to find a trace containing the original handshake containing the key exchange and
pre-pend it
= Use Fiddler or similar
— As a proxy that runs on the client
— As a proxy on another workstation & point the remote client to it

SAN
— This is cool ‘cuz we don’t need the server key to decrypt it NfoSec R
= When all else fails...

— Use knowledge of TCP & SSL segmentation to watch for inefficiencies

» SSL payload size (small is probably ok for SSH but not FTP)!
— ldentify unlike flows across firewalls using encrypted data pattern matching
— Look for other factors that throttle throughput in other sessions

*Or the client key exchange uses Diffie-Hellman in which we are even if we posses the server key.

Diffie-Hellman

» Described in a 1976 White Paper by Whitfield Diffie and Martin Hellman
» Protects against long-term key compromise (i.e. server keys!)
» |s not SSL specific, can be used for any secret information exchange

= Client generates a random number, as does server

— Thus forms a way for the client to encrypt the pre-master (already encrypted with the
server’s public key) back to the server

Diffie-Hellman

2011 FELLOW 2011 FELLOW

Use Case: Firewall Pattern Matching

= Perimeter firewalls NAT from private to public IP
— Terminates TCP but maintain SSL session data

— Unfortunately, we cannot say the same for proxy servers, load balancers, or anything
else that terminates SSL connections

» Simply grab some binary data (i.e. encrypted) from SSL on one side of the firewall
and filter on it to find the other side

= Once you have a match, you can then filter on the TCP streams and determine the
firewall delay and other characteristics
— Do not use SPANs nor multiple sniffers due to delays and timestamp synchronization

— Best practice is to use taps above and below the firewall that feed a common sniffer or
are combined via a visibility fabric (Apcon, Big Switch, Gigamon, Ixia, VSS, etc.)

= Also works great for following encrypted VMWare VDI streams (filter on UDP
payload) across multiple tiers

Using Wireshark to Find NATed SSL Flows

” Start with a pool of packets captures inside and outside of the firewall. .,

-~ - - - - ——

B
TECECTNE .
| . At lani

“mime

e Filter on some SSL data from the flow of interest into the firewall...

I B L L e L D o | loptmrme.. Coe Gt NN T
| s

Langie Dola e Lessio JoTr—
WA 114e T T e L el S At st lata

v &0 nn- D.0000N8 3. 700410 pestI0NT. syl luek tam BCRVWENET] TLse 7% Apntinatean Dats Q—Which plcks up the matching ﬂow
Frame LI0JR00 ENE4 Byves am o wire CRIGED BITR), B0 Bytes ragtured (32400 Bive) On the other side of the ﬁrewa“.

Ethmroet 11, Sec 0200, Det Cracn 4000000 (/8 8a 0. a0 0%:00)
Inturmet Prococo) Yersion &, Stc: peddi00Y wutlooh com (107 90,258, 254), Bal: sintari.ed }
Yeanswbsaton Canrral Pravaral, Srr fare: 4% (681), Ser Porvs sREM (ARNAE] . Seqr SARLANSAT. Suki SRARATIM, Lesl 140
Sature Sothwts Layet
TSl Mocard Laynt i Applicatiem Dete Frotedel. W

Contant Type ! Applicatian Dats O

e P -t

versisn: NS 1.0 (Senn)
L B
Crcrystad Applicetiom Deta JUSTETRIN0 JaBEAIMA T b TR I Snalin I Tllumin

e We now have our two flows either side of the firewall for focused analysis

e sptwes B g T s DWEDe NTYR-

[T e
™

. -
A DORTS 3%+ AT [T wagemen of

™ MY [TT7 sagment &

e . [T0F segeers of & rossseet hat ")

» " T wngrent of &

mwr . L o o

U Ceg—

e ”" g

™o ' segure o 4

1. AL TP segeemt of & reansenblnd PN

m©wr " nll.l.‘JAI\ PACA] Saq-Pitade i 1Y MO ITINIINL el ™ Lt

™ b aose[D)esy (A0K) SegePitOBNIEY ACKILTERIINL e iYW Lawed
e WE (PLF pegwee of & reqsemeilet PN

S ™ 51T saprunt of & ressaent hen TN

Use Case: Slow eMail Migration

= Migrating user’s mailboxes from internal Lotus Notes servers to Microsoft Office
365 in the Cloud

— Typical mailbox size was 50 GB
— Throughput varied from 200-500 kbps over a 1 gig Internet pipe
— 4k users @ 1 hour per user = 166 days!

» Subsequent web proxy bypass did not help nor did moving to DMZ
= Graphing the I/O revealed a potential problem area

__

Freglt s Lk

Use Case: Slow eMail Migration

= A pattern emerged when walking through the SSL & checking neighboring flows
— A second flow (in red below) running was clearly controlling the throughput
— The throttling was set to approximate three bursts or blocks of data per second
— Properties could not be changed, i.e. they are controlled by the (MS) cloud server

Ha borgth D Torm Bpza Certnuhan Pertpcdd ez — .
B4 0, DO0IIN00S O, 03843000 Proy migrariestarenr TCP SLIEIT2800 [aln] Seg=-184 JFIITEE ACk-025400150 Wit=10{ Les=i{
8 1518 0.00037E006 O 0%4588000 WgrationServer Froay fidwl dpplécation Gata
Fa 1918 0, GC0FES000 & 0%IM4000 #graiionSersar Prooy TCP [TCF aageent of a reasseshisd PIRI]
1] 1363 0, SN0 &, OR300 Wigraiinrilerear Prowy TS dpplegdtipn Datas
&} &4 0, 000080 & 054T4H Prowy mhgrarisafacer TCF TLLATIESEIN [ACK] Sef=1893F1IMee ACk=-T25300050 win=290F Lase=0
ir dEd 0, 05OTPO000 & 0TLAETI000 Wigrattoiiheresd P Tihwl -Bpplicatinn Gavs, dsplicacicn Dels
il 4 0,060 I0000 6. 03547000 Froxy Hiprationtarver 0P sl Tiedain [axl & B8 Arkedl 3300010 Wined% 0 Lemwid
2] 0, OO00AB000 &, 018000 Frooy mugraviontarver FOP sliEfTiess00 [sx] Seg=184 Wi ACk=12 530108 WinsJF0T Lermi
StOp > 53 0 DOEESTIO00 OO0 ERNIH) - Frowy MipraTionSarver TCP ST T80 [A0K] SeqalBHITITEE ACheSZSE0RR1] Wine IS Lemel
kL 16§ 00 SERISO000. B A2 32100 Frowy =igraTieeserver ThS«l Applecatiom Data, Appiicacien Deta
Wait { g TEL 0 SALXPRDDD G ARRINTOH . Prooay =igrariontarver Thiwl appliation fata, dgglicacian Dama
1] 4 0.000104000 & AERIILEN - MigravTonSerwds Pray TP AZRRifTTLs [W0X] Seq=Sii0e16) Ack=-FITIE108T win=911 Lafel
Start e]] 13 0, 00LTRI000 &, 47 3000 Friwy TE&vi Applicatisn Dita
40 1518 0,000 1000 ©.4T7 MM Priay wr [Tcr sagment ol & reaysevhlad POU]
4] 1Rl 0, QOOGORIDD &, 4TTTI00 Proxy TLSv1l Application Data
L, 1518 000AS4000 G ATH1MH . FigrationSerser Frowy TiSel Appiacation Cata
StOp > BF 81 O OOTINEN0 CIAPATIBOOD Prosy migrati shiSaryer TOP WLASETRSEN [ACE] G180 P IIPRE Ack=ATIAMUTN Whi=2000 Lani=d
Lk] §%8 G iBSeDi0d & ANSAE1S800 Frowy Figrarishfarwer TiSvl Apelioacies fdca, dpplicarion Sdis. Apedicetién Hara
Wait —{ + 132 03001030 O 0P X0 Prowy mgravienserver TLEvl Apgdiioacios Dwes
by B4 DODSHO0NIT O SDBEIEON WigrationServar Frowp T GXEITETINIAN [ACTY FeqmilVITHI84T Ack=TAI0A18I0 Winal il L=l

Start ——» i 1518 S_0ORISFO00 O F1MATEOO0 Migrabionierver Frouy Tavl dpsiication Dets

Use Case: Slow eMail Migration

= Each data stream was equated to one piece of malil
— Due to control channel, conversion rate was approximately three emails per second(!)

— Another potential optimization was to increase the application layer block size to greater
than 12k (which we derived from the SSL segment size of 4112 bytes x 3 per turn)

JraTiaeierse { PLINTTRIN00 [ACK] Segelns

) 1 p=Lbe AR -
IR0 [ACK] MQ-1M5722008 ARATIIII240 Wined0M | ao
L " 1A

[TCF sgmet

= Solution was to run multiple severs simultaneously with multiple mailbox
migrations per server to the cloud, which is per MS recommendation

— We were running up to 40 migrations in parallel at the peak
— All mailboxes were migrated in under 30 days

Wrapping it Up

= First gain a solid understanding of the general application layer command-
response characteristics in the unencrypted world (HTTP, SQL, mail, etc.)

— Pretend that the SSL layer *is* the application layer and apply those characteristics
= Figure out who is the client and who provides the data

— Usually the client opens the connection, but not always!
» Breakdown the TCP segmentation and the SSL segmentation

— Ensure that the SSL segment size makes sense for the application (SSH vs. HTTPS for
instance)

= |dentifying network from back-end response time is easier but must use patterns
and neighboring flows for more complex cases

Thank You!

Contact us!

scott.haugdahl@bluecrossmn.com

robert.bullen@bluecrossmn.com

mailto:Scott.Haugdahl@bluecrossmn.com
mailto:robert.bullen@bluecrossmn.com

