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Setting Expectations

= This session is not about..
— An introduction to SSL encryption
— How to set up SSL decryption in Wireshark
— A detailed walk through of the SSL handshake and all the variants

= This session is about...
— What you can do when you do not have access to server keys
» Calculating server command response time from SSL, even in the cloud
» Using encrypted data to your advantage
 |dentifying application layer behavior based on SSL patterns
— Walking through real world examples using Wireshark

— Focus will be on helping you to analyze application performance more so than security
breaches, suspicious activity, etc.



A (very) Brief History of
Secure Sockets Layer (SSL)

= Used to encrypt + protect integrity of network data
— SSL 2.0 was first “public release” in 1995

— SSL 3.0 released in 1996 forming the foundation for Transport Layer Security (TLS) 1.0
(RFC 2246, 1999)

— TLS 1.0 is not backward compatible with SSL 3.0!
— Upgraded to TLS 1.1 (RFC 4346, 2006) and TLS 1.2 (RFC 5346, 2008)

= Supports a wide variety of encryption algorithms

— RSA and DSA are asymmetric (public key encrypts; private key decrypts) — used to
exchange and generate key information during the SSL handshake

— AES and 3DES are symmetric algorithms (one key encrypts and decrypts) — used to
transfer data (much faster to compute) after the SSL handshake

= TLS 1.0 or higher is recommended practice
— Many clients & systems now support TLS 1.2 which addresses some vulnerabilities



What’s so Special About the Client Key Exchange?

Client Network Server

Client Client Client Server
generates encrypts sends decrypts
pre-master using secret to secret with

secret public key server private key

Both Client and Server generate the master secret from the pre-master to
generate the session key.

Therefore, Wireshark needs the server’s private key to decrypt the client
pre-master secret to order to generate the master secret to generate the

session key to decrypt the SSL packet data!



A Tale of Two Connections

Good, we will get the client key exchange!

Source Destinanion
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Rats, the client is reusing a previous session ID and the server accepts.



What if we don’t have the client key exchange*?

= |f your SSL session reused the Session ID...
— Try to find a trace containing the original handshake containing the key exchange and
pre-pend it
= Use Fiddler or similar
— As a proxy that runs on the client
— As a proxy on another workstation & point the remote client to it

SAN
— This is cool ‘cuz we don’t need the server key to decrypt it NfoSec R
= When all else fails...

— Use knowledge of TCP & SSL segmentation to watch for inefficiencies

» SSL payload size (small is probably ok for SSH but not FTP)!
— ldentify unlike flows across firewalls using encrypted data pattern matching
— Look for other factors that throttle throughput in other sessions

*Or the client key exchange uses Diffie-Hellman in which we are even if we posses the server key.




Diffie-Hellman

» Described in a 1976 White Paper by Whitfield Diffie and Martin Hellman
» Protects against long-term key compromise (i.e. server keys!)
» |s not SSL specific, can be used for any secret information exchange

= Client generates a random number, as does server

— Thus forms a way for the client to encrypt the pre-master (already encrypted with the
server’s public key) back to the server



Diffie-Hellman
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Use Case: Firewall Pattern Matching

= Perimeter firewalls NAT from private to public IP
— Terminates TCP but maintain SSL session data

— Unfortunately, we cannot say the same for proxy servers, load balancers, or anything
else that terminates SSL connections

» Simply grab some binary data (i.e. encrypted) from SSL on one side of the firewall
and filter on it to find the other side

= Once you have a match, you can then filter on the TCP streams and determine the
firewall delay and other characteristics
— Do not use SPANs nor multiple sniffers due to delays and timestamp synchronization

— Best practice is to use taps above and below the firewall that feed a common sniffer or
are combined via a visibility fabric (Apcon, Big Switch, Gigamon, Ixia, VSS, etc.)

= Also works great for following encrypted VMWare VDI streams (filter on UDP
payload) across multiple tiers



Using Wireshark to Find NATed SSL Flows

” Start with a pool of packets captures inside and outside of the firewall. .,
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Use Case: Slow eMail Migration

= Migrating user’s mailboxes from internal Lotus Notes servers to Microsoft Office
365 in the Cloud

— Typical mailbox size was 50 GB
— Throughput varied from 200-500 kbps over a 1 gig Internet pipe
— 4k users @ 1 hour per user = 166 days!

» Subsequent web proxy bypass did not help nor did moving to DMZ
= Graphing the I/O revealed a potential problem area

________________________________________________________________________________________
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Use Case: Slow eMail Migration

= A pattern emerged when walking through the SSL & checking neighboring flows
— A second flow (in red below) running was clearly controlling the throughput
— The throttling was set to approximate three bursts or blocks of data per second
— Properties could not be changed, i.e. they are controlled by the (MS) cloud server
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Use Case: Slow eMail Migration

= Each data stream was equated to one piece of malil
— Due to control channel, conversion rate was approximately three emails per second(!)

— Another potential optimization was to increase the application layer block size to greater
than 12k (which we derived from the SSL segment size of 4112 bytes x 3 per turn)
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=  Solution was to run multiple severs simultaneously with multiple mailbox
migrations per server to the cloud, which is per MS recommendation

— We were running up to 40 migrations in parallel at the peak
— All mailboxes were migrated in under 30 days



Wrapping it Up

= First gain a solid understanding of the general application layer command-
response characteristics in the unencrypted world (HTTP, SQL, mail, etc.)

— Pretend that the SSL layer *is* the application layer and apply those characteristics
= Figure out who is the client and who provides the data

— Usually the client opens the connection, but not always!
» Breakdown the TCP segmentation and the SSL segmentation

— Ensure that the SSL segment size makes sense for the application (SSH vs. HTTPS for
instance)

= |dentifying network from back-end response time is easier but must use patterns
and neighboring flows for more complex cases



Thank You!

Contact us!

scott.haugdahl@bluecrossmn.com

robert.bullen@bluecrossmn.com
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