
�����������	
���

��

Agenda

• Throughput

• Sender delays

• Segment size

• Processing

• Receiver delays

• Bytes in flight

• Buffer size

• Congestion window

• SACK

• SSL

A very

practical

look!

How Does An FTP Work?

• Control session (port 21)

• Data session (port 20)

• Active vs. passive FTP

Who Has What Job?

• Sender sends as fast
as it can

• Network transports as
fast as it can

• Receiver processes as
fast as it can

Whose Fault Is It?

• When there is a problem,
something does not have
enough capacity

• (Or is slowing it down
intentionally!)

• Which component is it?

• And… how do I fix it?

Buffer / Network Structure

• Source port 20 (FTP data: active)

• Bytes per second: ~ 200,000

• Total bytes sent: 21 million

• Destination port 20

• No data bytes

Throughput

Limits on the Sender

• Sender breaks things up into pieces to

send out

• What size? Does it matter?

Segment Size

•

Throughput

• Source port 3090 (passive FTP)

• Bytes per second : ~ 42,000

• Destination port 3090

• A few bytes sent

• SSL session

Throughput

• Source port 3090 (passive FTP)

• Bytes per second : ~ 42,000

After Segment Size Change

Before Segment Size Change

• Source port 3088 (passive FTP)

• Bytes per second : ~ 100,000

Limits on the Sender

• Sender breaks things up
into pieces to send out

• It takes him time to get
the pieces ready and
then to send them

Microseconds

Microseconds

Filling buffer

really fast!

Filling the Buffer

• Processing time

• Other side says stop sending

• TCP algorithms

• slow start,

• congestion avoidance,

• fast retransmit, and

• fast recovery

TCP Buffers and MSS

•In the TCP Open, the TCP Send / Receive
buffers and MSS are set.

•The Send / Receive buffers are pools used to
hold data prior to sending it out across the
physical adapter.

•TCP Send and Receive Buffers can affect speed
of transmission

Server

Interface IP

Layer

TCP

Layer

Application

Send and

Receive Buffers
Packet

Send and

Receive

Buffers

• Max Segment Size
–Can affect speed of transmission
–Can be different in each direction.

• On most platforms each application
can explicity set the buffer size via a
socket option call.

How Should Buffers Be Set?

•Complicated area to provide recommendations

•Kind of applications you are using,

•Kind of network

•Client window settings

•For applications which send a lot of data (FTP) across a high bandwidth network, then
may want to make MTU sizes and buffer sizes as large as possible (IF other end can
absorb the traffic)

Server

Interface IP

Layer

TCP

Layer

Application
Network

Send and

Receive Buffers

Send and

Receive Buffers

TCP Congestion Control - History

“In October of’86,the Internet had the

first of what became a series of

‘congestion collapses’. During this period,

the data throughput from LBL to UC

Berkeley (sites separated by 400 yards

and two IMPhops) dropped from 32 Kbps

to 40 bps.“

“Congestion Avoidance and Control”

Van Jacobson Lawrence Berkeley Laboratory

Michael J. Karels University of California at Berkeley

November, 1988

Van Jacobson

Congestion Control Solution

“In particular, we wondered if the 4.3BSD (Berkeley UNIX)

TCP was mis-behaving or if it could be tuned to work better

under abysmal network conditions. The answer to both of

these questions was “yes”.

•TCP congestion control : each source determines network

capacity

•ACK : Round Trip Time signals

Current Work

•RFC 5681 : TCP Congestion Control

•This document defines TCP's four intertwined congestion

control algorithms: slow start, congestion avoidance, fast

retransmit, and fast recovery. In addition, the document

specifies how TCP should begin transmission after a

relatively long idle period, as well as discussing various

acknowledgment generation methods.

Max Segment - Window

-- SYN Packet: TCP

Open Connection.

-- Will send out 30

packets at 1,430

before waiting for an

ACK.

Filling Window

Port 2089

Pkt 368: 14:15:49.845144 – Set Window Size to 17520

Remote:

10.2.161.4

Port 4987

MSS: 1448

Pkt 369: 14:15:49.845266 – Send Data -> 1448
Pkt 370: 14:15:49.845304 – Send Data -> 1448
Pkt 371: 14:15:49.845308 – Send Data -> 1448
Pkt 372: 14:15:49.845312 – Send Data -> 1448
Pkt 373: 14:15:49.845328 – Send Data -> 1448
Pkt 374: 14:15:49.845332 – Send Data -> 1448
Pkt 375: 14:15:49.845336 – Send Data -> 1448
Pkt 376: 14:15:49.845353 – Send Data -> 1448
Pkt 377: 14:15:49.845357 – Send Data -> 1448
Pkt 378: 14:15:49.845374 – Send Data -> 1448
Pkt 379: 14:15:49.845387 – Send Data -> 1448
Pkt 380: 14:15:49.845391 – Send Data -> 1448
Pkt 381: 14:15:49.845512 – Send Data -> 144

(12 * 1448) + 144 = 17,520

Server

Pkt 384 14:15:49.846338 – ACK

ACKs will catch up

• You may see many packets sent with a small interval in between.

• Then, all the ACKs will follow.

Congestion Window = 0

•Window size = 0 : stop sending

•Printers:

• Paper jam in the printer

• Printer is out of paper Router 2

Chicago

Router 1

New York

Server

Window=0

High Performance Networking Options

•TCP Selective Acknowledgments (SACK, RFC2018):
SACKs allow receiver to acknowledge non-consecutive

data

•Large Windows (RFC1323): Allows windows greater

than 64K

Window Size Limit (RFC1323)

•TCP header uses 16 bit field for receive window size

•Largest window is 2**16 = 65K bytes.

•TCP option, "Window Scale", defined to allow windows larger than 2**16

•Option defines an implicit scale factor used to multiply the window size value to obtain
the true window size

•With RFC 1323, TCP Extensions for High Performance, maximum window size
increased to 1,073,741,823 bytes

•Both sides of link must support window scaling or the default of 65,535 bytes will apply
as maximum window size

How Window Scaling is Sent

•The three-byte Window Scale option may be sent in a SYN segment by a TCP. It has two purposes:

(1) indicate that the TCP is prepared to do both send and receive window scaling, and

(2) communicate a scale factor to be applied to its receive window.

•Thus, a TCP that is prepared to scale windows should send the option, even if its own scale factor is 1.

The scale factor is limited to a power of two and encoded logarithmically, so it may be implemented by

binary shift operations.

TCP Window Scale Option (WSopt):

Kind: 3 Length: 3 bytes

+---------+---------+---------+

| Kind=3 |Length=3 |shift.cnt|

+---------+---------+---------+

Window Scaling Both Ways

•Option is an offer, not a promise; both sides must send Window Scale options in their

SYN segments to enable window scaling in either direction

•If window scaling enabled, then the sender will right-shift its true receive-window

values by 'shift.cnt' bits

•'shift.cnt' may be zero

•Window scaling can be done in either or both directions

Window Scale Values

•The scaling parameter is base 2.

•Normal window size allows 216 bytes

•Maximum scaling factor is 14

•Maximum window size = 230 bytes

•Window becomes maximum of 1 gigabyte

•Window scale option of 1 � 217

2. 2.2 = 4

3. 4.2 = 8

4. 8*2 = 16

5. 16*2 = 32

6. 32*2 = 64

7. 64*2 = 128

8. 128*2 = 256

9. 256*2 = 512

10. 512*2 = 1,024

11. 1,024*2 = 2,048

12. 2,048*2 = 4,096

13. 4,096*2 = 8,192

14. 8,192*2 = 16,384

15. 16,384*2 = 32,768

16. 32,768*2 = 65,536

17. 65,536*2 =131,072

18. 131,072*2=262,144

SACK / BIF

• What is SACK?

• How does ACK work?

• Out of Order / Retransmit

• SACK packets

• How to calculate Bytes in Flight(BIF)

• Why?

From RFC2018

• RFC2018 defines Selective Acknowledgement (SACK)

“TCP may experience poor performance when multiple packets are

lost from one window of data. With the limited information

available from cumulative acknowledgements, a TCP sender can

only learn about a single lost packet per round trip time. An

aggressive sender could choose to retransmit packets early, but

such retransmitted segments may have already been successfully

received.”

From RFC2018

• So, what is the solution?

“A Selective Acknowledgment (SACK) mechanism,

combined with a selective repeat retransmission policy,

can help to overcome these limitations. The receiving

TCP sends back SACK packets to the sender informing

the sender of data that has been received. The sender can

then retransmit only the missing data segments.”

Let’s go back to our example

Port 2089

Pkt 368: 14:15:49.845144 – Set Window Size to 17520

Pkt 369: 14:15:49.845266 – Send Data -> 1448
Pkt 370: 14:15:49.845304 – Send Data -> 1448
Pkt 371: 14:15:49.845308 – Send Data -> 1448
Pkt 372: 14:15:49.845312 – Send Data -> 1448
Pkt 373: 14:15:49.845328 – Send Data -> 1448
Pkt 374: 14:15:49.845332 – Send Data -> 1448
Pkt 375: 14:15:49.845336 – Send Data -> 1448
Pkt 376: 14:15:49.845353 – Send Data -> 1448
Pkt 377: 14:15:49.845357 – Send Data -> 1448
Pkt 378: 14:15:49.845374 – Send Data -> 1448
Pkt 379: 14:15:49.845387 – Send Data -> 1448
Pkt 380: 14:15:49.845391 – Send Data -> 1448
Pkt 381: 14:15:49.845512 – Send Data -> 144

(12 * 1448) + 144 = 17,520

Server

Pkt 384 14:15:49.846338 – ACK

SACK:
• Got 369-373,
• missing 374

and 375,
• got 376-381

Remote:

10.2.161.4

Port 4987

MSS: 1448

How Does ACK Work?

• With the limited information
available from cumulative
acknowledgements, a TCP
sender can only learn about a
single lost packet per round
trip time.

• Assume each segment has
100 bytes.

• ACK is for all the bytes
received and indicates the next
byte of data that is expected.
This is the ‘cumulative ACK’ in
the RFC above.

Segment 1

ACK 101
Segment 101

Segment 201

Segment 301

Segment 401

ACK 301

ACK 501

Duplicate ACK - Retransmits

• Assume each segment has

100 bytes.

• ACK is for the next byte of

data it is waiting for.

• A duplicate ACK is sent when

a packet is received and the

sequence number indicates

that it does not contain the

byte you are waiting for.

• After 3 duplicate ACKs, the

packet is retransmitted.

Segment 1

ACK 101
Segment 101

Segment 201

Segment 301

Segment 101

ACK 101

ACK 401

ACK 101

LOST!

Sequence Number + Data Length = Expected ACK

Let’s Look at Some Packets

Sequence Number + Data Length = Next Sequence Number (Expected ACK)

Multiple Packets in a Window

From RFC2018

• RFC2018 defines Selective Acknowledgement (SACK) as

follows:

• TCP may experience poor performance when multiple packets are

lost from one window of data. With the limited information

available from cumulative acknowledgements, a TCP sender can

only learn about a single lost packet per round trip time. An

aggressive sender could choose to retransmit packets early, but

such retransmitted segments may have already been successfully

received.

•What was expected in packet #4 is sequence # 2167534519.

•What was actually received is sequence # 2167535779

•The packet containing bytes 2167534519 through 2167535778 is lost (or not yet
received).

•Since packet #4 contains a HIGHER sequence number than expected, it is noted
as being out of order.

Out of Order

•SACK packets will contain the sequence numbers of the out

of order packets received.

•May be multiple blocks (multiple packets received out of

order).

SACK will keep track of Out of Order

The SACK Fields are in TCP Options

SACK in Action!

• Missing …1778-1779

Multiple Out of Order Packets
in SACK

Bytes in Flight

• RFC2581 is first version of TCP Congestion Control

(updated by RFC5681). Defines:

• FLIGHT SIZE: The amount of data that has been sent

but not yet acknowledged.

• Why does this matter?

Example #1

• Sender sent packets with data length of 4,380, 606, and 8760

without waiting very long.

• Then, to get the ACK from the receiver, 27 milliseconds elapsed.

• The idea is to keep the pipe filled.

Example #2

• In this example, the ACKs are coming very quickly, so even

though the bytes in flight are low, there does not appear to be a

lot of waiting.

Bytes In Flight Helps Determine
Window Size

• When deciding upon the most efficient window size for

your network, the two most important considerations

are:

– round-trip latency and

–the end-to-end bandwidth on the network.

• Both elements determine the amount of data that can be

on the network ("in-flight") at any given time.

Throughput / BIF

• We like to look at throughput as well as bytes in flight.

• Complicated area!

Bytes In Flight / Receive Buffer

Limits on the Sender

• Sender breaks things up
into pieces to send out

• It takes him time to send
the pieces

• Sender can only send
as much as the other
side can absorb

Compare IPv6 and IPv4

• As integration of IPv6 happens, it is interesting to compare both

protocols in terms of throughput and bytes in flight.

IPv4 vs. IPv6 FTP

•

Bytes in Flight

•

Receive Buffer Full!

Impact?

It could be the network!

• RTT

• Retransmissions

• Duplicate acknowledgements /

segments

• Out of order packets

Doing it Securely

• Sometimes security can
be configured incorrectly

• Will slow down traffic
because of unneeded
overhead

• How?

SSL Application Data Packet

• Application data record has the actual data

SSL Application Record Overhead

• Overhead with each data record

Port 3088

Sending about 50

application data

records per

packet at 21 bytes

each.

1 byte of data –

20 bytes of

overhead!

Summary

• It will only get worse!

• More SSL!

Contact Info

• Nalini Elkins

• Nalini.elkins@insidethestack.com

• (831) 659-8360

• Love to hear from you!

