
The Anatomy of a
Vulnerability

Let's talk about vulnz :)

Ron Bowes (@iagox86)
Sharkfest 2015

Who am I?

● Ron Bowes - @iagox86
● https://www.skullsecurity.org
● Close to 10 years breaking things
● Founded SkullSpace, BSides Winnipeg
● Currently doing product security for big tech

company
○ Includes working on Bug Bounty, auditing software,

hardening our frameworks, etc.

https://www.skullsecurity.org
https://www.skullsecurity.org

As always, my views are my own and
don't represent my company

What we're gonna talk about

● Vulnerabilities! Vulnz! How things are
broken! :)

● Basically...
○ What's a vulnerability?
○ Why do we care?
○ Types of vulnerabilities
○ How they're exploited

■ (with some examples!!)

○ How they're fixed (properly)

Today's goal

● You'll leave here with some familiarity of
what a vulnerability is

● You'll see some examples of vulnerabilities
of various types

● You'll have somewhat actionable ways of
avoiding it if you have to code

● You'll have a chance to ask for questions or
stories at the end. :)

What the heck is a
vulnerability anyways?

This is a vulnerability

A vulnerability is...

● A way to bypass a security mechanism by
taking advantage of a flaw
○ Code flaws (like buffer overflow)
○ Injection (like cross-site scripting)
○ Design problems (like bad authentication)
○ Cryptographic problems
○ etc.

● Later, we'll look at examples of each!

How to recognize a vulnerability

● Can you crash the program?
● Can you convince the program to mix up

code and data?
● Can you authenticate as one user and take

actions as another?
● Can you leak information about encrypted

data?
● Is something behaving oddly?

A little more formally...

The "STRIDE" acronym/initialism:

● Spoofing
● Tampering
● Repudiation
● Information disclosure
● Denial of service
● Elevation of privileges

We care because...

We (as an industry) care because...

● Negative press really sucks
● It's expensive
● Vulnerable code tends to be bad in other

ways
○ Tech debt, unmaintainable code
○ Code that uses good security practices tends to be

more maintainable as a bonus!
○ The find-bug-then-patch-goto-10 strategy is awful,

systemic fixes are important

Plus, it's just plain bad for people

Let's look at some real bugs!

Source

https://www.reddit.com/r/spiders/comments/388p10/his_lunch_was_twice_as_big_as_he_was/
https://www.reddit.com/r/spiders/comments/388p10/his_lunch_was_twice_as_big_as_he_was/

Off-by-one bug

Off-by-one bug

● This one isn't from a real program, it's from a
CTF challenge

● A great example of a simple by bad mistake
● Full writeup can be found here:

○ https://blog.skullsecurity.org/2015/defcon-quals-
wwtw-a-series-of-vulns

○ (I'll post these slides to Twitter after, @iagox86)

https://blog.skullsecurity.org/2015/defcon-quals-wwtw-a-series-of-vulns
https://blog.skullsecurity.org/2015/defcon-quals-wwtw-a-series-of-vulns
https://blog.skullsecurity.org/2015/defcon-quals-wwtw-a-series-of-vulns

Computer's memory
int func()

{

 char str1[] = "this is string";

 char str2[] = "this is moar string";

}

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF
0x00 t h i s i s s t r i n g \0 t
0x10 h i s i s m o a r s t r i
0x20 n g \0 ...

● str1 is in memory, followed by str2

Computer's memory
int func()

{

 ...

 str1[10] = "!"

}

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF
0x00 t h i s i s s t ! i n g \0 t
0x10 h i s i s m o a r s t r i
0x20 n g \0 ...

● We set the 10th character of str1 to '!'

Computer's memory
int func()

{

 ...

 str1[15] = "?"

}

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF
0x00 t h i s i s s t ! i n g \0 ?
0x10 h i s i s m o a r s t r i
0x20 n g \0 ...

● What if we change the 15th character?

So what?

● We can change the first character of the next
string

● … so?

Vulnerable authentication function

int authenticate()

{

 char password[8];

 int socket = connect(authentication_server)

 read(password, 9);

 validate_authentication(socket, buffer);

}

Reading one byte too many

The result

password => "123456789"

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF
0x00 p a s s w o r d S S S S
0x10

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF
0x00 1 2 3 4 5 6 7 8 9 S S S
0x10

Overwrote part of socket!

The exploit

Here's the real exploit we used:
Overwrite the socket with "0"
sys.stdout.write("XXXXXXXX\0")
sys.stdout.flush()

Wait for the service to try reading the data
time.sleep(2)

The server thinks it's reading the auth data,
but it's actually reading this:
sys.stdout.write("\x6d\x2b\x59\x55")
sys.stdout.flush()

dnsmasq

source

http://recursostic.educacion.es/observatorio/web/gl/software/software-general/638-servidor-dns-sencillo-en-linux-con-dnsmasq
http://recursostic.educacion.es/observatorio/web/gl/software/software-general/638-servidor-dns-sencillo-en-linux-con-dnsmasq

What is dnsmasq?

● dnsmasq is a program for dns/dhcp/tftp
● It's installed in a ton of places, including

embedded devices
● I was auditing it with a fuzzer (we'll talk about

fuzzers after)
● I plan to write a blog about this soon… keep

an eye on https://skullsecurity.org or
@iagox86

https://skullsecurity.org

DNS protocol

● Client sends one or more "questions"
● Server returns one or more "answers"
● Both question and answer contain a name

○ eg: www.skullsecurity.org
● Responses contain both the question and

the answer(s), if any

http://www.skullsecurity.org

DNS protocol

● Answer packet could look like this:
[header]

Question 1: skullsecurity.org (type = ANY)

Answer 1: skullsecurity.org is at 206.220.196.59

Answer 2: skullsecurity.org's mail is handled by ASPMX2.
GOOGLEMAIL.COM

Answer 3: skullsecurity.org has a TXT record "oh hai NSA"

● Problem: tons of space wasted on hostnames
○ (And yes, these are real records from my server, but I

left out a bunch)

http://www.skullsecurity.org
http://www.skullsecurity.org
http://www.skullsecurity.org
http://www.skullsecurity.org

Solution: pointers

● The way a DNS response packet actually
looks (normally):

Question 1: skullsecurity.org

Answer 1: [see q1] is at 206.220.196.59

Answer 2: [see q1]'s mail is handled by ASPMX2.GOOGLEMAIL.
COM

Answer 3: [see q1] has a TXT record "oh hai NSA"

● Each record contains a pointer to the first
record

http://www.skullsecurity.org

The problem…

● How names were parsed…
○ Read each part of name, increment counter by

length of name
○ Copy into buffer
○ Add a period after

■ The period isn't counted as part of the length!

Pointers to the rescue!

● To get a long enough packet, pointers are
needed:

Question 1: evildomain.com

Answer 1: aaaa.[see A1]

● Loops until it thinks it's at the max (it's
actually 20% above the max)

Consequence?

● Overwrites its in-memory configuration
○ Upstream DNS
○ Scripts
○ Sockets
○ Basically everything

● Almost certainly exploitable
○ I spent some time writing an exploit
○ I even had a name picked out… but…

● Discovered in 2.73rc5, fixed in 2.73rc8
● Here's the mailing list post:

○ http://lists.thekelleys.org.uk/pipermail/dnsmasq-discuss/2015q2/009529.html

http://lists.thekelleys.org.uk/pipermail/dnsmasq-discuss/2015q2/009529.html
http://lists.thekelleys.org.uk/pipermail/dnsmasq-discuss/2015q2/009529.html

Lesson

● They build strings while incrementing a
counter a lot

● That's doomed to fail again
● A systemic fix is required, not a simple

patch!

XSS in Red Hat Satellite
Server

Let's talk Javascript for a sec

● Web pages serve HTML and Javascript
● Javascript can read any page on its domain

○ aka, javascript on http://example.org can access
http://example.org/everyotherpage

○ For more info search: "Same origin policy"
● When a user is authenticated, that content

may be authenticated-only
○ http://example.org can access

http://example.org/admin if and only if the user is
logged in as an admin

http://example.org
http://example.org/everyotherpage
http://example.org/everyotherpage
http://example.org
http://example.org
http://example.org/admin

Same origin policy

Source

http://www.lucadentella.it/en/2013/07/11/javascript-same-origin-policy-e-jsonp/
http://www.lucadentella.it/en/2013/07/11/javascript-same-origin-policy-e-jsonp/

Cross-site scripting

● Cross-site scripting refers to a user being
able to run Javascript in another user's
browser in the vulnerable site's context

● That is…
○ User A posts malicious script on

http://example.org/vuln
○ User B visits http://example.org/vuln
○ The code executes in the context of

http://example.org and can access
http://example.org/admin

http://example.org/vuln
http://example.org/vuln
http://example.org/vuln
http://example.org
http://example.org
http://example.org/admin
http://example.org/admin

The problem…

● The problem is that HTML and Javascript
are intermixed on every site
○ If HTML contains a <script> (or a bunch of other

things), it instantly switches to Javascript mode
○ If part of HTML is controlled by a user, then it

shouldn't contain Javascript

XSS Example

● A PHP page containing:
<?php print "<h1>Welcome back, $username!</h1>"; ?>

● An authenticated user is sent to:
example.org/vulnpage?username=<script>...</script>

● And the page contains:
<h1>Welcome back, <script>...</script>!</h1>

Short break

● I don't want to
overload you, so
here's a weird picture
of a cute dog

● Let's re-define…
○ Javascript
○ Same origin policy
○ Cross-site scripting

Red Hat Satellite Server

● Server management software
● Install it on one machine, control your entire

fleet
○ Push patches, run scripts, install software
○ Basically, full control

The vulnerability

● The error log isn't sanitized for Javascript

1. Cause a 404 error by visiting:
http://10.1.1.1/<script>...</script>

2. Make sure the admin visits
http://10.1.1.1/admin/logs

3. Push software/scripts to every managed server
Demo: https://www.youtube.com/watch?
v=GdvoCr93kRQ&list=UUWM4m_tGTzOxV49VuYCM4tg

http://10.1.1.1/
http://10.1.1.1/
http://10.1.1.1/admin/logs
http://10.1.1.1/admin/logs
https://www.youtube.com/watch?v=GdvoCr93kRQ&list=UUWM4m_tGTzOxV49VuYCM4tg
https://www.youtube.com/watch?v=GdvoCr93kRQ&list=UUWM4m_tGTzOxV49VuYCM4tg
https://www.youtube.com/watch?v=GdvoCr93kRQ&list=UUWM4m_tGTzOxV49VuYCM4tg

Vendor's response?

● Vendor didn't want to fix it
○ They said that XSS = "moderate risk", full stop.
○ That's right: installing packages on every server on

your network was a "moderate" bug!
○ ...until I made a video (see last slide)

● They assigned it CVE-2014-3595 and fixed
it!
○ Context is important

Ignoring
researchers…
what could go
wrong?

Seriously… if
people are doing
free work for you,
listen to them and
respect them!

Source

https://www.reddit.com/r/OSHA/comments/3auxkj/dont_worry_about_puttin_out_cones_or_nothin/
https://www.reddit.com/r/OSHA/comments/3auxkj/dont_worry_about_puttin_out_cones_or_nothin/

Pass the hash

Let's talk about hashing first...

● Hashing is a one-way transformation
● You can go from A to B, but not B to A
● If a A is hashed, creating B…

○ You can't get the original A back, given B
○ You can store the hash and use it to validate A

without exposing A
■ (in theory…)

In other words...

Given a potato:

It's trivial to create hashbrowns:

In other words...

But given hashbrowns:

It's computationally difficult to build the potato:

?????

Password hashes...

● Likewise, passwords:
○ "password"

● Are trivial to change into hashes:
○ "5f4dcc3b5aa765d61d8327deb882cf99"

● But given the hash:
○ "5f4dcc3b5aa765d61d8327deb882cf99"

● it's computationally difficult to recover the
password:
○ "_M▒;Z▒e▒▒'฀▒ϙ"???

Password hashes…

● The idea is that a server stores hashes
● When the user logs in…

1. The user sends their password to the
server

2. The server hashes the password
3. The server compares the new hash to the

stored hash

Problem…

● Before SSL, passwords would be sent in
plaintext

● Sometimes, the password is hashed before
it's sent to prevent that:
a. User hashes password
b. User sends hash to server
c. Server verifies that the hash is valid (sometimes it

hashes it a second time)
(This is a gross oversimplification of how SMB works)

Advantages

● The cleartext password isn't revealed
● Auto sign-on without storing password

○ This is more or less how SMB mounts work
● For safety, client only stores hashes, no

passwords
○ … wait, hang on a sec

Disadvantages

● The hash is stored, which means we can still
log in… recall the process:
1. User hashes password
2. User sends hash to server
3. Server verifies that the hash is valid

● The hash is stored, which means we can still
log in… recall the process:
1. User hashes password
2. UserAttacker sends hash to server
3. Server verifies that the hash is valid

Result

● If an attacker compromises either the client
or server, they get hashes and can
authenticate to the other

● The password are difficult to recover…
● … but they can still be used to log into any

other server, so who cares?

DNSCat

DNS is cool

● DNS can egress from pretty much every
network
○ nslookup test.skullseclabs.org
○ nslookup insertdatahere.skullseclabs.org

● Requests will always get to my server
● Responses will always get back to the client

○ read_passwd.skullseclabs.org
...is a TXT record for... 'root:x:0:0:root:/root:
/bin/bash...'

A full command and control tunnel

● I wrote dnscat (and later, dnscat2) to test
networks
○ https://github.com/iagox86/dnscat2

● Client can run anywhere, and connect to the
authoritative server as if it was TCP
○ It's great fun. :)

https://github.com/iagox86/dnscat2
https://github.com/iagox86/dnscat2

The result is obvious

Arbitrary data off any
network?

Best backdoor ever!

So what?

● In a way, this is a vulnerable design
○ Taking advantage of the design of DNS to smuggle

traffic around
○ Definitely not intended by RFC1035 in 1987 :)

● And by the way…
○ I really want to write a Wireshark dissector for this,

but I don't know how
○ Come see me after if you can help :)

dnscat2

● I'll do a demo if there's time
● If not, the code is here:

○ https://github.com/iagox86/dnscat2
● I also have a Twitter account specifically for

it:
○ https://twitter.com/dnscat2

https://github.com/iagox86/dnscat2
https://github.com/iagox86/dnscat2
https://twitter.com/dnscat2
https://twitter.com/dnscat2

Source

Finding / killing bugs

https://www.reddit.com/r/spiders/comments/3avid9/thought_you_guys_might_like_this_drawing_i_made/
https://www.reddit.com/r/spiders/comments/3avid9/thought_you_guys_might_like_this_drawing_i_made/

Auditing code

● Read code, look for
dangerous stuff

● Requires practice
and patience

● Pretty common as a
consultant
○ "Here's 40,000,000

lines of code. Can you

audit it by Friday?" (I wish I

was kidding)

The "dangerous" parts

● You have 40,000,000 lines of code. Now
what?

● Think of a "threat model" - where do things
go wrong?

● Commonly…
○ Reading files
○ Networking
○ Cryptography
○ Access control

● Use STRIDE
Source

http://www.ioffer.com/i/little-tikes-wee-waffle-castle-49-pieces-518207794
http://www.ioffer.com/i/little-tikes-wee-waffle-castle-49-pieces-518207794

Fuzzing

● Sending data into a program and seeing if it
crashes (or accesses bad memory)
○ Maybe files
○ Maybe network traffic
○ Maybe messing with hardware ("fault injection")

Fuzzer types

● Fuzzers can be simple or intelligent
● Some fuzzers (like afl-fuzz) try to understand

the program a bit
○ That's what I used for dnsmasq

● Most fuzzers require a starting point
○ Often called a "corpus"

Common fuzzer tactics

● Flip bits
● Change a number to be really big, or zero, or

negative
● Change the length of a string
● Truncate a file/packet

The downside to fuzzers

● Fuzzers aren't perfect
○ Fuzzers are based on luck
○ Triaging crashes is hard

● Some projects are just hopeless
○ Fuzz, patch, goto 10
○ Projects that rely on fuzzers are doomed

● Fuzzing is awesome for auditing new code…
○ But isn't a replacement for strong practices

Bug bounties

● Pay people to find bugs
for you!

● Great way to track how
well your other security
measures work

Education

● Developers need to avoid bugs
● Culture is important

○ Pride in their code
○ A desire to do things "right"
○ Peer code reviews,

audits, checked
egos

○ Being comfortable

with finding / fixing
bugs

Systemic protections

● Frameworks and libraries are super
important
○ Angular, Ember, etc. w/ context-sensitive escaping
○ String operations
○ Cryptography
○ Basically, don't re-do stuff yourself. You'll fail.

● Low-level issues have system protections
○ ASLR, DEP, Stack cookies, etc.
○ Important, but not sufficient (can usually be

bypassed)

Most of all: be pro-active

● The cycle of introducing and
fixing bugs sucks

Conclusion

Source

http://alexkonstad.deviantart.com/art/Expedition-no-47-363187820
http://alexkonstad.deviantart.com/art/Expedition-no-47-363187820

Vulnerabilities are hard

● Most companies are very reactive
○ Fuzzing and auditing is important…
○ But systemic protections (frameworks and

education) are better
● It's impossible to prove that a program is

bug-free…
○ But, by educating developers and providing

hardened frameworks, you can eliminate the "easy"
stuff!

Contact

Ron Bowes

ron@skullsecurity.net

https://twitter.com/iagox86

https://github.com/iagox86

https://skullsecurity.org

(I posted the slides to Twitter)
Source

mailto:ron@skullsecurity.net
mailto:ron@skullsecurity.net
https://twitter.com/iagox86
https://twitter.com/iagox86
https://github.com/iagox86
https://github.com/iagox86
https://skullsecurity.org
https://skullsecurity.org
https://www.reddit.com/r/woahdude/comments/2s6hmr/heres_a_snail_eating_grass/
https://www.reddit.com/r/woahdude/comments/2s6hmr/heres_a_snail_eating_grass/

