SharkFest'17 US

Wireshark & Time Accurate Handling of Timing When Capturing Frames

Tuesday June 20, 2017 Thursday June 22, 2017

Werner Fischer

Principal Networking Consultant | avodaq AG

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

About me

- From Germany (sorry again for the accent)
- More than a decade Dual-CCIE (R/S, Security)
- Sniffer Certified Master
- Wireshark Certified Network Analyst
- VMware Certified Professional
- IPv6 Forum Certified Engineer (Gold)
- More than 20 years in the networking area

AGENDA

- Time basic
- Time Protocols
- NTP
- PTP
- Wrap-UP

Capture Files and other useful infos:

http://goo.gl/LGNWo8

Enterprise ToD Landscape

- Accurate/Secure/Reliable ToD for server/routers/applications for improved network operations and business operations
- Frequency and Time Synchronization

A Note on Terminology with Timing

- <u>Accuracy</u> how close a measurement is to a true value
- <u>Precision</u> how close repeated measurements are to each other
- Frequency Reference signal drives circuits to a common standard
 - "10 Mhz is the same everywhere"
- Phase making sure two systems understand when things start and stop- agree on milestones
 - "Everyone clapping together"

Precision Timing is essential

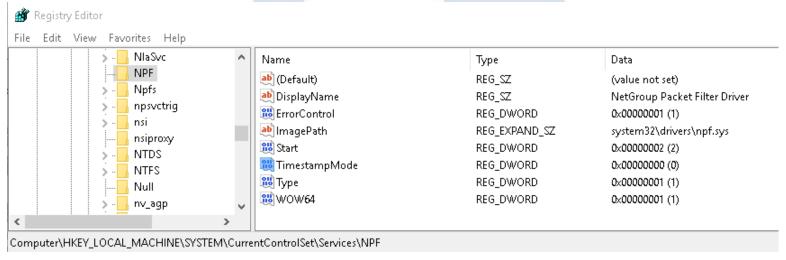
- Clock is the one of the most important component of any modern electrical system
- Network and applications also need accurate timing information to correlate all the events
 - Network Analysis
 - Application transactions
 - Data Forensics
 - Event-log analysis
- Timestamps mainly mandatory for compliance

Timing Challenge for up-to-date Networks

- Switches can forward the Frames in a matter of microseconds
- Ultra low latency switches for high frequency trading
- Some assumptions about the network
 - The transmission delays are almost constant over time (or at least change slowly)
 - The transmission delays are symmetrical between master and slave (i.e. time to travel from master to slave is the same as from slave to master)

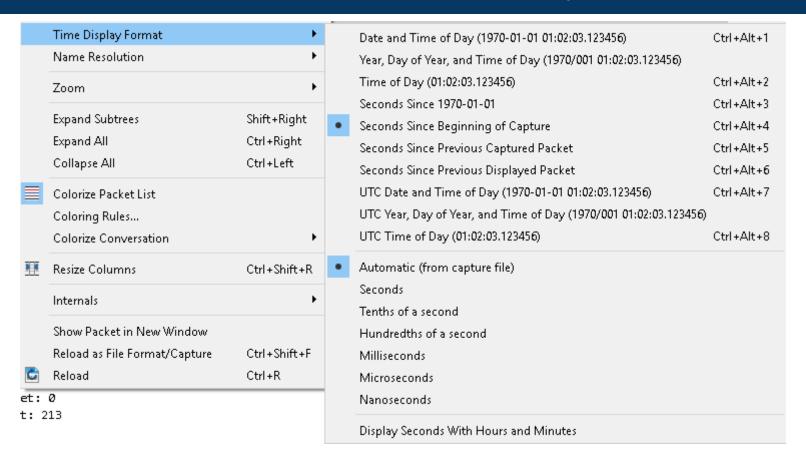
Different Timestamps for different encapsulation

- frame.time
- prism.did.mactime
- radiotap.mactime


Encapsulation type: Ethernet (1)

Epoch Time: 1497442999.490510000 seconds

```
Radiotap Header v0, Length 28
                                                            Header revision: 0
                                                            Header pad: 0
                                                            Header length: 28
                                                          > Present flags
                                                            MAC timestamp: 169685850
                                                                            > Frame 1: 64 bytes on wire (512 bits), 64 bytes captured (512 bits)
                                                                            USB URB
                                                                                 [Source: host]
                                                                                 [Destination: 1.1.0]
                                                                                 URB id: 0x00000000ed896f00
                                                                                 URB type: URB SUBMIT ('S')
                                                                                 URB transfer type: URB CONTROL (0x02)
                                                                               > Endpoint: 0x80, Direction: IN
                                                                                 Device: 1
                                                                                 URB bus id: 1
                                                                                 Device setup request: relevant (0)
Frame 6: 270 bytes on wire (2160 bits), 270 bytes captured (2160 bits
                                                                                 Data: not present ('<')
   Interface id: 0 (\Device\NPF {4C3659F3-91DF-46A3-A615-EDA158651988
                                                                                 URB sec: 1362459244
                                                                                 URB usec: 273742
   Arrival Time: Jun 14, 2017 14:23:19.490510000 W. Europe Daylight T:
                                                                                 URB status: Operation now in progress (-EINPROGRESS) (-115)
                                                                                 URB length [bytes]: 40
   [Time shift for this packet: 0.000000000 seconds]
                                                                                 Data length [bytes]: 0
                                                                                 [Response in: 2]
   [Time delta from previous captured frame: 0.003978000 seconds]
                                                                                 Interval: 0
   [Time delta from previous displayed frame: 0.003978000 seconds]
                                                                                 Start frame: 0
   [Time since reference or first frame: 0.011334000 seconds]
                                                                                 Copy of Transfer Flags: 0x00000200
                                                                                 Number of ISO descriptors: 0
                                                                            > URB setup
```


WinPcap and Time

- Timestamp Mode adjusted by registry http://seclists.org/wireshark/2010/Aug/311
- WinPcap is synchronized with the system clock only once, at the beginning of the capture!

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

Wireshark and Time Display Format

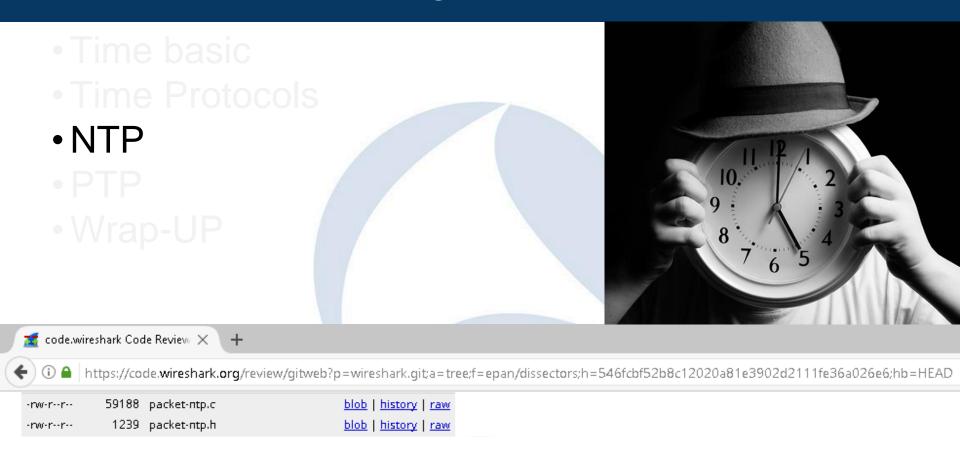
SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

AGENDA

- Time basic
- Time Protocols
- NTP
- PTP
- Wrap-UP

Different Time Sources available

- NTP (Network Time Protocol)
 - Several RFCs
 - time synchronization protocol for packet network
- GPS (Global Position System)
- IRIG (And other serial timing protocols)
- PTP (Precision Timing Protocol)
 - Defined in IEEE1588
 - Another time synchronization protocol for packet network


Different Time Scales

The relationships in real time

2017-06-14 18:31:21	Wednesday	day 165	timezone UTC+2	
2017-06-14 16:31:21	Wednesday	day 165	MJD 57918.68843	
2017-06-14 16:31:39	week 1953	318699 s	cycle 1 week 0929 day 3	
2017-06-14 16:31:48	GRI 9940	48 s until	next TOC 16:32:09 UTC	
2017-06-14 16:31:58	Wednesday	day 165	37 leap seconds	
	2017-06-14 16:31:21 2017-06-14 16:31:39 2017-06-14 16:31:48	2017-06-14 16:31:21 Wednesday 2017-06-14 16:31:39 week 1953 2017-06-14 16:31:48 GRI 9940	2017-06-14 16:31:21 Wednesday day 165 2017-06-14 16:31:39 week 1953 318699 s 2017-06-14 16:31:48 GRI 9940 48 s until	

http://www.leapsecond.com/java/gpsclock.htm

<u>AGENDA</u>

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

IANA and NTP Parameters

Network Time Protocol (NTP) Parameters

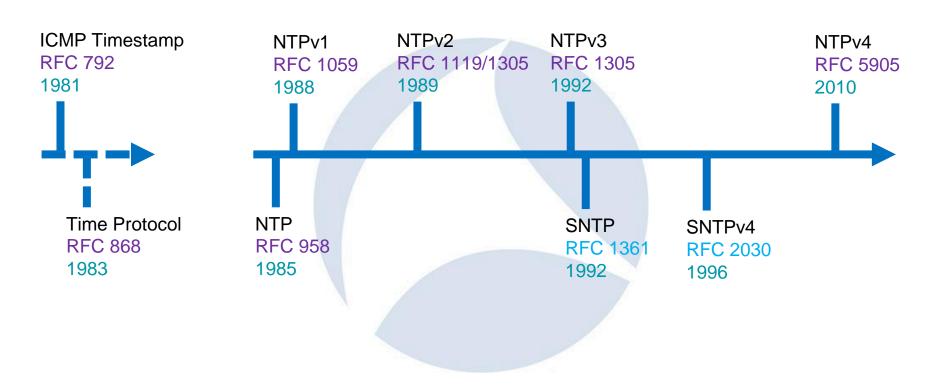
Created

2010-03-25

Last Updated

2016-03-31

Available Formats



Registries included below

- NTP Reference Identifier Codes
- NTP Kiss-o'-Death Codes
- NTP Extension Field Types

- Great resource for reference
- https://www.iana.o
 rg/assignments/ntp
 -parameters/ntp parameters.xhtml

History of NTP

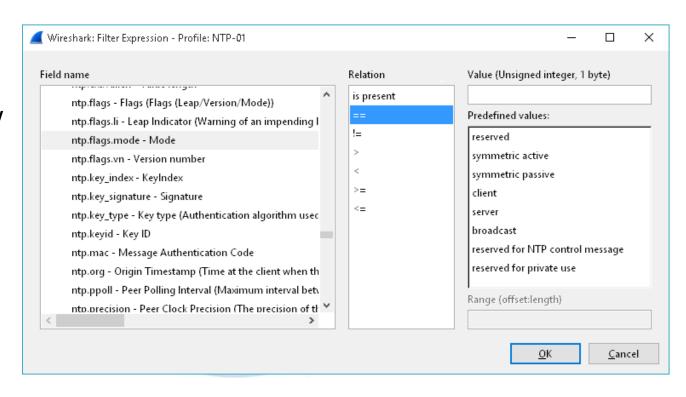
SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

Useful (S)NTP RFCs – only for your reference

- RFC 1305
 - Network Time Protocol (Version 3) Specification, Implementation and Analysis
- RFC 2030
 - Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI
- RFC 5905
 - Network Time Protocol Version 4: Protocol and Algorithms Specification
- RFC 5906
 - Network Time Protocol Version 4: Autokey Specification

- RFC 5907
 - Definitions of Managed Objects for Network Time Protocol Version 4 (NTPv4)
- RFC 7821
 - UDP Checksum Complement in the Network Time Protocol (NTP)
- RFC 7822
 - Network Time Protocol Version 4 (NTPv4) Extension Fields

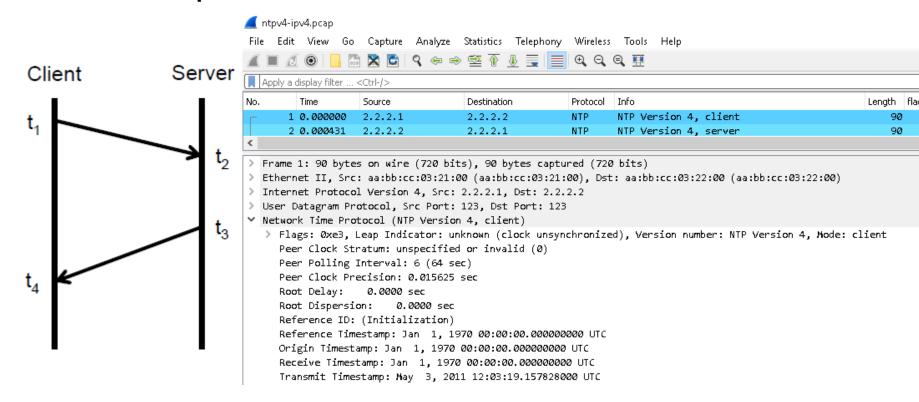
SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017


NTP Pool Project

- http://www.pool.ntp.org/en/
- " ...big virtual cluster of timeservers providing reliable easy to use NTP service for millions of clients ..."

NTP Modes

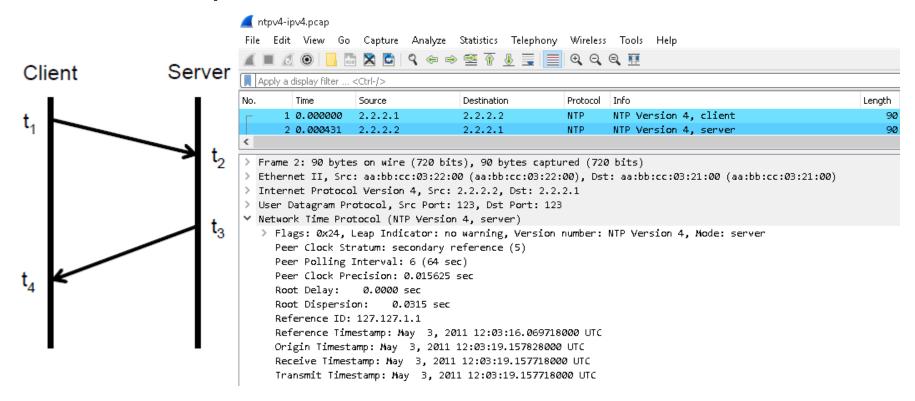
- Peer
- Client
- Server
- Broadcast/ Multicast
- Control
- PrivateUse


NTP Message Format

LI / VN / MODE	STRATUM								
POLL	PRECISION								
ROOT DELAY									
ROOT DISPERSION									
REFERENCE IDENTIFIER									
REFERENCE TIMESTAMP (64 bit scaled seconds)									
ORIGINATE TIMESTAMP									
RECEIVE TIMESTAMP									
TRANSMIT TIMESTAMP									

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

Basic NTP Time Information Exchange


Client Request

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

Basic NTP Time Information Exchange

Server Response

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

Basic NTP Authentication

```
• MD5
```

```
Reference Timestamp: Jan 1, 1970 00:00:00.0000000000 UTC
    Origin Timestamp: Jan 1, 1970 00:00:00.000000000 UTC
    Receive Timestamp: Jan 1, 1970 00:00:00.0000000000 UTC
    Transmit Timestamp: Oct 8, 2015 19:22:26.265421000 UTC
    Kev ID: 00000001
    Message Authentication Code: 875f9463f635d24d42c00715a42e0f93
    00 1c 42 a6 21 1a 00 1c 42 71 99 e6 08 00 45 00
                                                 ..B.!... Bq....E.
                                                 .`.E@.@. 7.....
    00 60 ed 45 40 00 40 11 37 0f 0a 00 01 1d 0a 00
0020 01 1c 00 7b 00 7b 00 4c 16 96 e3 00 03 fa 00 01
                                                  ...{.{.L ......
    00 00 d9 c1 40 f2 43 f2 a5 f6 00 00 00 01 87 5f
                                                  ....@.C. ......
     94 63 f6 35 d2 4d 42 c0 07 15 a4 2e 0f 93
                                                  .c.5.MB. .....
    Reference Timestamp: Jan 1, 1970 00:00:00.0000000000 UTC
```

• SHA-1

```
Origin Timestamp: Jan 1, 1970 00:00:00.0000000000 UTC
    Receive Timestamp: Jan 1, 1970 00:00:00.000000000 UTC
    Transmit Timestamp: Oct 8, 2015 17:21:32.287131000 UTC
    Kev ID: 0000000c
    Message Authentication Code: 6b944dce3f05510d206f615f36e900fa532594c8
0000 00 1c 42 a6 21 1a 00 1c 42 71 99 e6 08 00 45 00
                                                 ..B.!... Bq....E.
                                                 .d.'@.@. .).....
0010 00 64 8d 27 40 00 40 11 97 29 0a 00 01 1d 0a 00
0020 01 1c 00 7b 00 7b 00 50 16 9a e3 00 03 fa 00 01
                                                 ...{.{.P ......
    00 00 d9 c1 24 9c 49 81 79 2f 00 00 00 0c 6b 94
                                                 ....$.I. y/....k
     4d ce 3f 05 51 0d 20 6f 61 5f 36 e9 00 fa 53 25
                                                  1. ? . Q. o a 6. . . S?
0070
     94 c8
```

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

NTP Timestamps

- NTP use 64 bit-Timestamps
 - They consist of a 32-bit part for seconds and a 32-bit part for fractional second
 - The time scale rolls over every 2³² seconds (136 years)
 - Theoretical resolution of 2⁻³² seconds (233 picoseconds)
 - It uses an epoch of 1 January 1900
 - The first rollover occurs in 2036, prior to the UNIX year 2038 problem

```
Reference Timestamp: Jul 16, 2009 07:46:42.227275000 UTC
Origin Timestamp: Jan 1, 1970 00:00:00.000000000 UTC
Receive Timestamp: Jan 1, 1970 00:00:00.000000000 UTC
Transmit Timestamp: Jul 16, 2009 07:47:04.581275000 UTC
Key ID: 54040000
Message Authentication Code: 00000000000000000000000000000
```

0000	00	10	ha	0.4	21	1Ω	00	Λa	ο/1	cΩ	75	64	ΛR	00	4.5	00	1zdE.
0010	00	60	$\cap \cap$	32	$\cap \cap$	nn	80	11	26	56	Ωa	nn	$\cap \cap$	∩4	Ωa	$\cap \cap$.`.2 &v
0020	00	02	-00	7h	00	7h	-00	4 c	5h	61	dh	0.0	11	Ťα	-00	0.0	{.{.∟ [a
0030	0.0	0.0	0.0	01	03	TP.	-00	0.0	0.0	0.0	CP	വഴ	- 59	62	Ra.	2 P	
0040	h6	-cc				-			UU		00	0.0	0.0	0.0	0.0	0.0	
0050	0.0	0.0	CP	-09	-59	- 78	94	CP	75	43	54	04	0.0	0.0	0.0	0.0	YX uCT
10060	\cap	00	nn	nn	mn	mn	mm	mm	nn	TITT	$\cap \cap$	00	00	00			
0000	~~	22	~~	~~	22	22	~~	22	~~	~~	22	~~	~~	20			

Time.sec
Seconds
32 bit

Time.Frac Fraction 32 bit

NTP and DHCP / DHCPv6

- IPv4 and DHCP
 Option 42
- IPv6 and DHCPv6
 - SNTP dhcpv6.requested_option_code == 31
 - NTP dhcpv6.requested_option_code == 56

```
> Frame 1: 167 bytes on wire (1336 bits), 167 bytes captured (1336 bits)
 Ethernet II, Src: Vmware 9b:a1:5d (00:0c:29:9b:a1:5d), Dst: Vmware 38:f3:68 (00:0c:29:38:f3:68)
Internet Protocol Version 6, Src: fe80::20c:29ff:fe9b:a15d, Dst: fe80::20c:29ff:fe38:f368
  User Datagram Protocol, Src Port: 547, Dst Port: 546
DHCPv6
    Message type: Reply (7)
    Transaction ID: 0xf69b57
  > Client Identifier
  > Server Identifier
  NTP Server
       Option: NTP Server (56)
       Length: 61
       NTP Server Address
          Suboption: NTP Server Address (1)
          Length: 16
          NTP Server Address: 2a01::1

▼ NTP Multicast Address

          Suboption: NTP Multicast Address (2)
          Length: 16
          NTP Multicast Address: ff05::101

▼ NTP Server FODN

          Suboption: NTP Server FQDN (3)
          Length: 17
          NTP Server FODN: ntp.example.com
```

```
Option: (55) Parameter Request List

Length: 4

Parameter Request List Item: (1) Subnet Mask

Parameter Request List Item: (3) Router

Parameter Request List Item: (6) Domain Name Server

Parameter Request List Item: (42) Network Time Protocol Servers

Option: (255) End
```

```
00 0c 29 38 f3 68 00 0c 29 9b a1 5d 86 dd 60 00
                                             ..)8.h.. )..]..`.
    00 00 00 71 11 40 fe 80 00 00 00 00 00 00 02 0c
                                             ...q.@.. ......
    29 ff fe 9b a1 5d fe 80 00 00 00 00 00 00 02 0c
                                              ).....
    29 ff fe 38 f3 68 02 23 02 22 00 71 47 c1 07 f6
                                              )..8.h.# .".aG...
                                             9b 57 00 01 00 0e 00 01 00 01 18 f0 0b 3f 00 0c
0050 29 38 f3 68 00 02 00 0e 00 01 00 01 18 ef 95 1b
    00 Oc 29 9b a1 53 00 38 00 3d 00 01 00 10 2a 01
0070
     0080
0090
     01 01 00 03 00 11 03 6e  74 70 07 65 78 61 6d 70
00a0
     6c 65 03 63 6f 6d 00
                                              le.com.
```

NTP and Multicast

- IPv4 and IGMP (Internet Group Management Protocol)
- IPv6 and MLD
 (Multicast Listener Discovery)

NTP and Multicast with IPv6

```
ff05::101
  46 1111.944489 2001:6f8:900:8e6c:2013::132
                                                                                    44:e4:d9:e3:77:54
                                                                                                          33:33:00:00:01:01
                                                                                                                                    110
                                                                                                                                         NTP Version
                                                   ff02::101
  47 1118.944227 fe80::46e4:d9ff:fee3:7754
                                                                                    44:e4:d9:e3:77:54
                                                                                                          33:33:00:00:01:01
                                                                                                                             NTP
                                                                                                                                         NTP Version
                                                   ff0e::101
  48 1120.944103 2001:6f8:900:8e6c:2013::132
                                                                                    44:e4:d9:e3:77:54
                                                                                                          33:33:00:00:01:01
                                                                                                                                   110
                                                                                                                                         NTP Version
  49 1177, 941269 2001:6f8:900:8e6c:2013::132
                                                   ff05::101
                                                                                                          33:33:00:00:01:01
                                                                                                                                         NTP Version
                                                                                    44:e4:d9:e3:77:54
                                                                                                                             NTP
  50 1183.940944 fe80::46e4:d9ff:fee3:7754
                                                   ff02::101
                                                                                    44:e4:d9:e3:77:54
                                                                                                          33:33:00:00:01:01
                                                                                                                             NTP
                                                                                                                                         NTP Version
                                                   ff0e::101
                                                                                    44:e4:d9:e3:77:54
  51 1184.940925 2001:6f8:900:8e6c:2013::132
                                                                                                          33:33:00:00:01:01
                                                                                                                             NTP
                                                                                                                                         NTP Version
 52 1243.937970 2001:6f8:900:8e6c:201
                                                                                                                                         NTP Version
                                          FF02::101 means all NTP servers on the same link as the sender.
                                                                                                                       :01
  53 1248.937753 2001:6f8:900:8e6c:201
                                                                                                                             NTP
                                                                                                                                         NTP Version
  54 1249, 937669 fe80::46e4:d9ff:fee3
                                                                                                                             NTP
                                                                                                                                         NTP Version
                                                                                                                                        NTP Version
  55 1307.934788 2001:6f8:900:8e6c:201
                                                                                                                       :01
                                                                                                                             NTP
  56 1313, 934418 2001:6f8:900:8e6c:201
                                                                                                                             NTP
                                                                                                                                   110
                                                                                                                                         NTP Version
                                          FF05::101 means all NTP servers in the same site as the sender.
  57 1313.934566 fe80::46e4:d9ff:fee3
                                                                                                                             NTP
                                                                                                                                         NTP Version
  58 1372.931464 2001:6f8:900:8e6c:201
                                                                                                                       :01
                                                                                                                             NTP
                                                                                                                                    110
                                                                                                                                         NTP Version
                                                                                                                             NTP
  59 1377, 931213 2001:6f8:900:8e6c:201
                                                                                                                                         NTP Version
                                          FF0E::101 means all NTP servers in the Internet.
 60 1377.931360 fe80::46e4:d9ff:fee3:
                                                                                                                       on 4. broadcast
                                                                    # Frame 49: 110 bytes on wire (880 bits), 110 bytes captured (880 bits)
⊕ Frame 48: 110 bytes on wire (880 bits), 110 bytes captured (880 bits)
                                                                    Ethernet II. Src: 44:e4:d9:e3:77:54 (44:e4:d9:e3:77:54), Dst: 33:33:0
                                                                    □ Internet Protocol Version 6. Src: 2001:6f8:900:8e6c:2013::132 (2001:6f8:900:8e6c:2013)
□ Internet Protocol Version 6, Src: 2001:6f8:900:8e6c:2013::132 (2001:6

⊕ 0110 .... = Version: 6

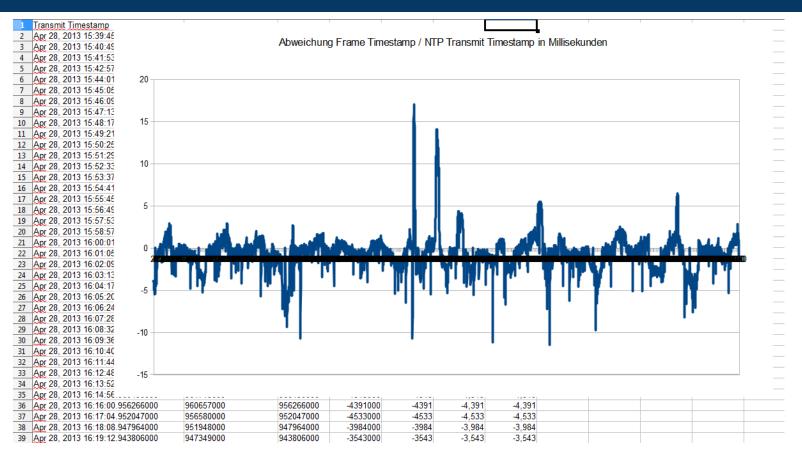
    ⊕ 0110 .... = Version: 6

                                                                      H .... 1110 0000 .... = Traffic class: 0x000000e0
                                                                        .... .... 0000 0000 0000 0000 = Flowlabel: 0x00000000
    .... .... 0000 0000 0000 0000 0000 = Flowlabel: 0x00000000
                                                                        Payload length: 56
   Payload length: 56
                                                                        Next header: UDP (17)
    Next header: UDP (17)
                                                                        Hop limit: 255
    Hop limit: 255
                                                                        Source: 2001:6f8:900:8e6c:2013::132 (2001:6f8:900:8e6c:2013::132)
    Source: 2001:6f8:900:8e6c:2013::132 (2001:6f8:900:8e6c:2013::132)
                                                                        Destination: ff05::101 (ff05::101)
    Destination: ff0e::101 (ff0e::101)
                                                                        [Source GeoIP: Unknown]
    [Source GeoIP: Unknown]
                                                                        [Destination GeoIP: Unknown]
    [Destination GeoIP: Unknown]

■ User Datagram Protocol, Src Port: 123 (123), Dst Port: 123 (123)

    ⊕ User Datagram Protocol, Src Port: 123 (123), Dst Port: 123 (123)

    ■ Network Time Protocol (NTP Version 4, broadcast)

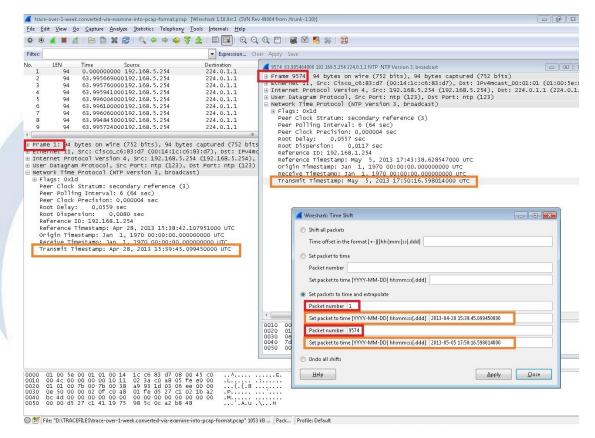

■ Network Time Protocol (NTP Version 4. broadcast)

⊕ Flags: 0x25

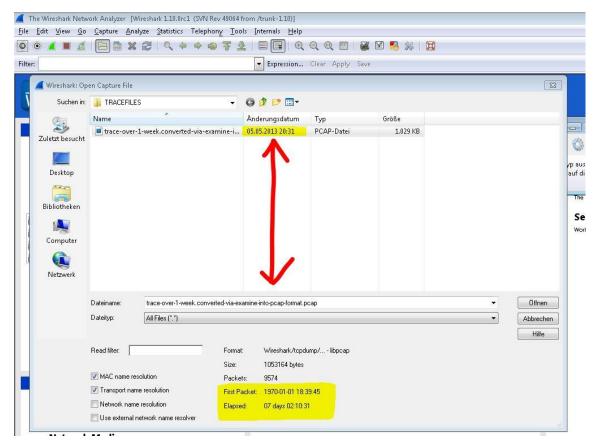
                                                                        Peer Clock Stratum: secondary reference (3)
   Peer Clock Stratum: secondary reference (3)
                                                                        Peer Polling Interval: 6 (64 sec)
    Peer Polling Interval: 6 (64 sec)
                                                                        Peer Clock Precision: 0,000000 sec
    Peer Clock Precision: 0,000000 sec
                                                                        Root Delav:
                                                                                      0.0555 sec
    Root Delay:
                  0.0555 sec
                                                                        Root Dispersion:
                                                                                           0,0332 sec
    Root Dispersion:
                      0,0323 sec
                                                                        Reference ID: 192.168.1.254
```

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

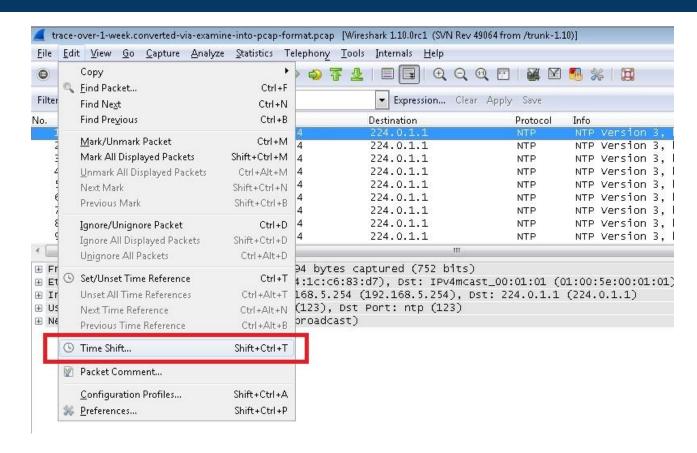
NTP Multicast versus frame.time

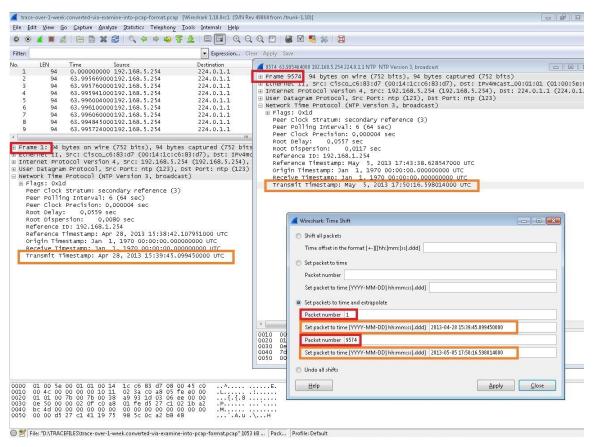


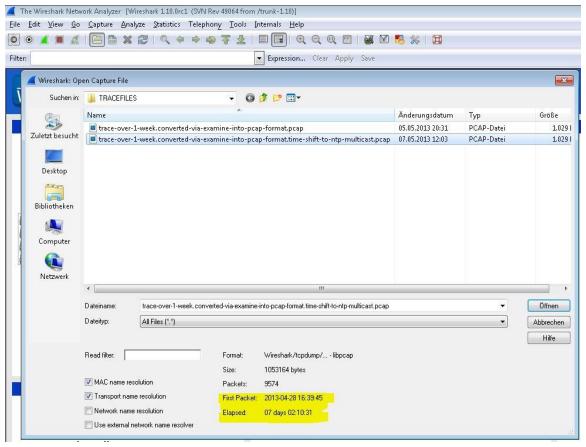
SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

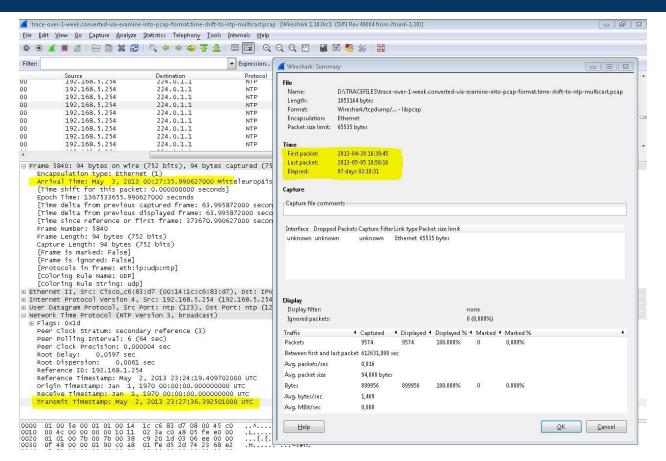

Time adjustment

- Time Shift for different capture file formats – sometimes needed
- File:

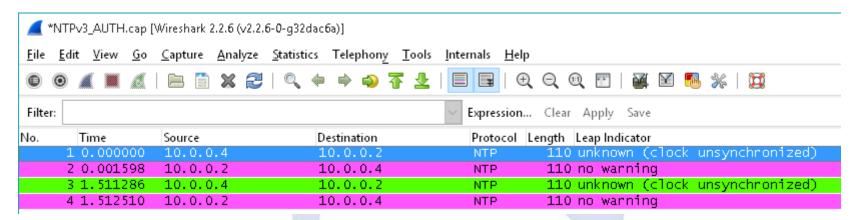

"trace-over-1week.converted-viaexamine-into-pcapformat.pcap"


SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017


SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017


SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

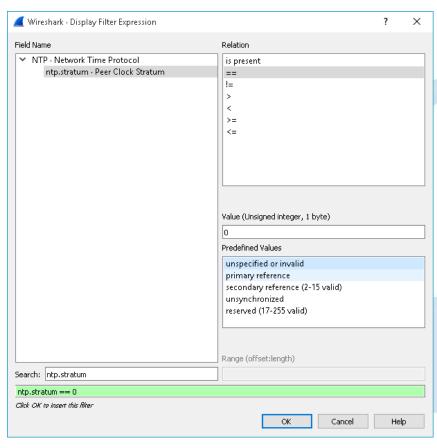
SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017


SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

NTP Coloring Rule

Colors for various NTP message types


Wireshark Color Filters for NTP – useful!

NTP Kiss-of-Death

- Kiss-of-Death packets are used by NTP servers to rate-limit NTP client requests that query too frequently
- Kiss of Death is a <u>not</u> a NTP protection protocol

```
Network Time Protocol (NTP Version 2, server)
 Flags: 0xd4, Leap Indicator: unknown (clock unsynchronized), Version number
   Peer Clock Stratum: unspecified or invalid (0)
   Peer Polling Interval: 4 (16 sec)
   Peer Clock Precision: 0.015625 sec
   Root Delay: 1.0000 sec
   Root Dispersion:
                     1.0000 sec
   Reference ID: Unidentified reference source 'RATE'
   Reference Timestamp: Jan 1, 1970 00:00:00.000000000 UTC
   Origin Timestamp: Feb 7, 2036 06:28:15.999999000 UTC
   Receive Timestamp: Feb 7, 2036 06:28:15.999999000 UTC
   Transmit Timestamp: Feb 7, 2036 06:28:15.999999000 UTC
    00 25 64 a1 e8 25 c8 d3 a3 5e b7 55 08 00 45 b8
                                                   .%d..%.. .^.U..E.
   00 4c 00 00 40 00 3f 11 37 c8 c0 a8 81 65 c0 a8
                                                   .L..@.?. 7....e..
                                                   .k.{...8 ......
    00 6b 00 7b f9 c5 00 38 85 95 d4 00 04 fa 00 01
   00 00 00 01 00 00 52 41 54 45 00 00 00 00 00 00
                                                    .....RA TE.....
    ff 00 ff ff ff ff ff ff 00
```

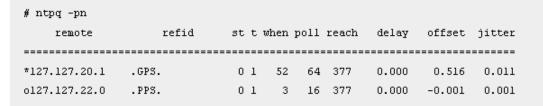
ntp.stratum - Peer Clock Stratum

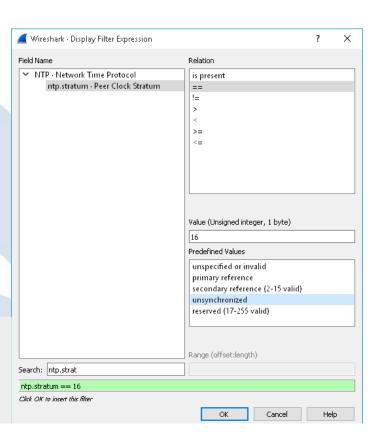
- Stratum is a concept used in NTP and its value indicates the clocks location in the hierarchy
- While a lower stratum often indicates a more accurate clock
- BTW: 2²⁵⁶ seconds?

ntp.refid - Reference ID

```
-/* According to rfc, primary (stratum-0 and stratum-1) servers should set
      * their Reference ID (4bytes field) according to following table:

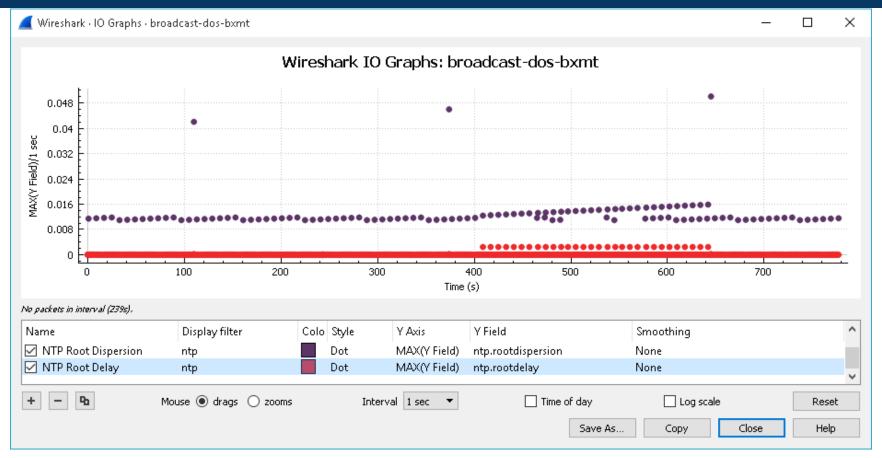
    Research in the source

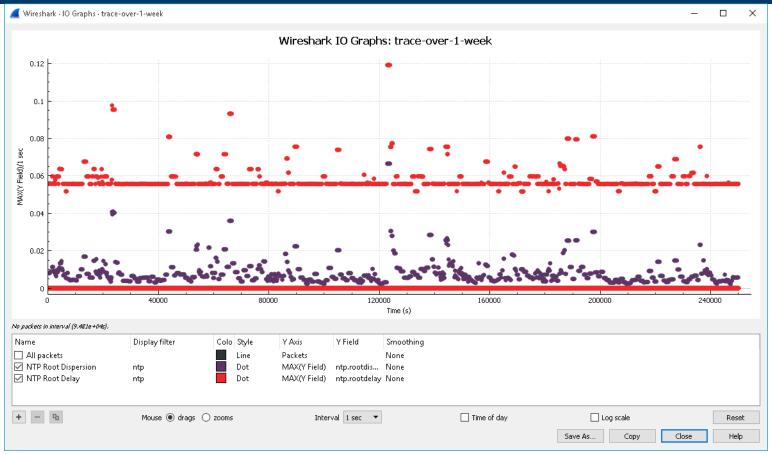

189
    Estatic const struct {
         const char *id;
         const char *data;
                                                                                    code - some
      } primary sources[] = {
194
         /* IANA / RFC 5905 */
195
                   "Geostationary Orbit Environment Satellite" },
196
         { "GPS\O", "Global Position System" },
197
         { "GAL\O", "Galileo Positioning System" },
                                                                                    interesting info
198
         { "PPS\0", "Generic pulse-per-second" },
199
         { "IRIG", "Inter-Range Instrumentation Group" },
         { "WWVB", "LF Radio WWVB Ft. Collins, CO 60 kHz" },
         { "DCF\O", "LF Radio DCF77 Mainflingen, DE 77.5 kHz" },


    Use a ASCII2HEX

         { "HBG\O", "LF Radio HBG Prangins, HB 75 kHz" },
         { "MSF\O", "LF Radio MSF Anthorn, UK 60 kHz" },
204
         { "JJY\0", "LF Radio JJY Fukushima, JP 40 kHz, Saga, JP 60 kHz" },
         { "LORC", "MF Radio LORAN C station, 100 kHz" },
206
         { "TDF\O", "MF Radio Allouis, FR 162 kHz" },
                                                                                    converter for your
         { "CHU\O", "HF Radio CHU Ottawa, Ontario" },
208
         { "WWV\O", "HF Radio WWV Ft. Collins, CO" },
209
         { "WWVH", "HF Radio WWVH Kauai, HI" },
         { "NIST", "NIST telephone modem" },
                                                                                    display filter ©
         { "ACTS",
                   "NIST telephone modem" },
         { "USNO",
                   "USNO telephone modem" },
         { "PTB\0", "European telephone modem" },
214
215
         /* Unofficial codes */
216
         { "LOCL", "uncalibrated local clock" },
217
         { "CESM", "calibrated Cesium clock" }.
218
         { "RBDM". "calibrated Rubidium clock" }.
                    "OMEGA radionavigation system" },
219
         { "DCN\O", "DCN routing protocol" },
221
         { "TSP\O", "TSP time protocol" },
222
         { "DTS\0", "Digital Time Service" },
                                                         packet-ntp.c
         { "ATOM", "Atomic clock (calibrated)" },
224
         { "VLF\O", "VLF radio (OMEGA,, etc.)" },
225
         { "1PPS", "External 1 PPS input" },
226
         { "FREE", "(Internal clock)" },
         { "INIT", "(Initialization)" },
228
         { "\0\0\0\0", "NULL" },
229
         { NULL,
```

NTP Stratum


- Stratum levels define the distance from the reference clock
- A NTP server that is directly connected to a stratum-0 device is called a stratum-1 server
- NTP clients need some way of judging which time sources are likely to be the most accurate and preventing timing loops
- An NTP client synchronized from a Stratum
 4 source would be a Stratum 5 device


SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

NTP Root Delay / Dispersion Monitoring / IO-Graph

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

NTP Root Delay / Dispersion Monitoring / IO-Graph

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

NTP Leap Seconds

 Leap seconds are scheduled to be inserted into or deleted from the UTC time scale in irregular intervals to keep the UTC time scale synchronized with the Earth rotation

NTP Leap Seconds Smearing

- Workaround for systems get confused if the time is stepped back
- Duplicate timestamps can occur

```
PS C:\Users\Administrator.LAB> w32tm.exe /query /status

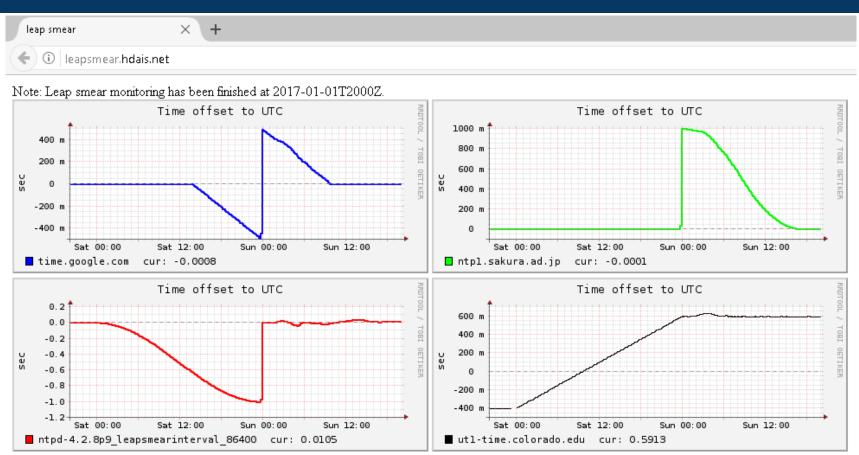
Leap Indicator: 1(last minute has 59 seconds)

Stratum: 3 (secondary reference - syncd by (5)NTP)

Precision: -6 (15.625ms per tick)

Root Delay: 0.1689984s

Root Dispersion: 11.9969834s


ReferenceId: 0x0D500C36 (source IP: 13.80.12.54)

Last Successful Sync Time: 31.12.2016 19:52:52

Source: time.windows.com,0x8

Poll Interval: 6 (64s)
```

NTP Leap Smearing Monitoring

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

Watching NTP leap second with tshark

- tshark -ni eth0 port 123 -R ntp.flags.mode==4 -Eheader=y -Tfields \
- -e frame.time \
- -e ntp.flags.li \
- -e ntp.xmt

```
frame.time ntp.flags.li ntp.xmt

Jun 30, 2015 14:48:01.772791000 1 d9:3d:1c:91:c6:04:86:7b

Jun 30, 2015 14:48:19.772441000 1 d9:3d:1c:a3:c5:e8:b2:2d

Jun 30, 2015 14:48:34.772810000 1 d9:3d:1c:b2:c5:fa:f6:4f

Jun 30, 2015 14:48:51.772300000 1 d9:3d:1c:c3:c5:d5:7d:c4

Jun 30, 2015 14:49:09.772914000 1 d9:3d:1c:d5:c5:fb:a2:93
```

Reference:

http://www.theptpguy.net/posts/2015/06/30/watching-the-leap-second-with-tshark

NTP to calibrate your capture file

- Tipp: Use Multicast NTP when possible
- Compare frame.time versus transmit timestamp

https://isc.sans.edu/forums/diary/What+Time+Is+It+Using+NTP+Traffic+to+Calibrate+PCAP+Timestamps/21135/

Public NTP Scanning Websites

- Open NTP Monitor (Mode 7) Scanning Project
 - https://ntpmonitorscan.shadowserver.org/
- OpenNTPProject.org NTP Scanning Project
 - http://www.openntpproject.org/

NTP Mode 6

Using Nmap – the easiest way ☺

- Mode 6
 - nmap -sU -pU:123 -Pn -n --script=ntp-info <IP>

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

NTP Mode 7

- Mode 7 with Nmap
 - nmap -sU -pU:123 -Pn -n --script=ntp-monlist <IP>

```
Network Time Protocol (NTP Version 2, private)

* Flags: 0x17, Response bit: Request, Version number: NTP Version 2, Mode: reserved for private use
0... ... = Response bit: Request (0)
.0. ... = More bit: 0
..01 0... = Version number: NTP Version 2 (2)
... .111 = Mode: reserved for private use (7)

* Auth, sequence: 23
0... ... = Auth bit: 0
..001 0111 = Sequence number: 23
Implementation: XNTPD (3)
Request code: MON_GETLIST_1 (42)
0000 ... = Err: No error (0x00)
... 0000 0000 0000 = Number of data items: 0
0000 ... = Reserved: 0x00
... 0000 0000 0000 = Size of data item: 0x0000
```

NTP Mode 7 - Replies

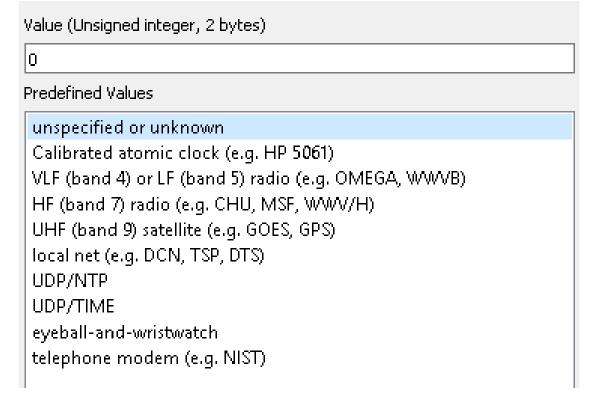
```
    Network Time Protocol (NTP Version 2, control)

                                                                                       Network Time Protocol (NTP Version 2, control)

▼ Flags: 0x16, Leap Indicator: no warning, Version number: NTP Version 2, Mode: reserved for N

                                                                                          Flags: 0x16, Leap Indicator: no warning, Version number: NTP Version 2, Mode: reserved for NTP control message
       00.. .... = Leap Indicator: no warning (0)
                                                                                                00.. .... = Leap Indicator: no warning (0)
       ..01 0... = Version number: NTP Version 2 (2)
                                                                                               ..01 0... = Version number: NTP Version 2 (2)
       .... .110 = Mode: reserved for NTP control message (6)
                                                                                                .... .110 = Mode: reserved for NTP control message (6)

▼ Flags 2: 0x82, Response bit: Response, Opcode: READVAR


       1... = Response bit: Response (1)

▼ Flags 2: 0x82, Response bit: Response, Opcode: READVAR

       .0.. .... = Error bit: 0
                                                                                               1... = Response bit: Response (1)
       ..0. .... = More bit: 0
                                                                                                .0.. .... = Error bit: 0
       ...0 0010 = Opcode: READVAR (2)
                                                                                                ..0. .... = More bit: 0
  Status: 0x0618, Leap Indicator: no warning, Clock Source: UDP/NTP, System Event Code: Unknown
                                                                                                ...0 0010 = Opcode: READVAR (2)
       00.. .... = Leap Indicator: no warning (0)
                                                                                            Sequence: 1
       ..00 0110 .... = Clock Source: UDP/NTP (6)
                                                                                          Status: 0x0600, Leap Indicator: no warning, Clock Source: UDP/NTP, System Event Code: unspecified
       .... 0001 .... = System Event Counter: 1
                                                                                                00.. .... = Leap Indicator: no warning (0)
       .... 1000 = System Event Code: Unknown (8)
                                                                                                ..00 0110 .... = Clock Source: UDP/NTP (6)
    AssociationID: 0
                                                                                                .... 0000 .... = System Event Counter: 0
    Offset: 0
    Count: 378
                                                                                                .... .... 0000 = System Event Code: unspecified (0)
                                                                                            AssociationID: 0
    > version="ntpd 4.2.8p9@1.3265-o Tue Dec 20 10:59:17 UTC 2016 (1)"
                                                                                            Offset: 0
    > processor="mips"
                                                                                            Count: 213
    > system="Linux/4.4.14"
                                                                                         Data
    > leap=0
    > stratum=3
                                                                                             > system="cisco"
    > precision=-17
                                                                                             > leap=0
    > rootdelay=57.997
                                                                                             > stratum=2
    > rootdisp=44.302
                                                                                             rootdelay=59.27
    > refid=192.168.1.253
     reftime=0xdceh9f7e.da5272e4
                                                                                             rootdispersion=20.66
    > clock=0xdceba1ca.2b91884d
                                                                                             > peer=62791
    > peer=64052
                                                                                             > refid=131.234.137.64
    > tc=10
                                                                                             reftime=0xDCEBA541.3BC3A5FC
    > mintc=3
                                                                                             > poll=10
    > offset=-1.389020
                                                                                             > clock=0xDCEBA931.25971874
    > frequency=4.385
    > sys jitter=1.700985
                                                                                             > phase=0.757
    > clk jitter=1.085
                                                                                             > freq=-5.89
    > clk wander=0.034
                                                                                             > error=9.89
```

NTP Control Clock Source / ntp.ctrl.sys_status.clksrc

Different Kind of sources for NTP available

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

NTP Amplification Attack / Reflection DDoS attacks

0.124919

12609.391319

12609.545084

12609.546779

Wireshark • Flow • single-request_multiple_answers_2_times.

49161 😽

192.168.1.55

109.75.223.1

d 123

123

123

NTP Version 2, private

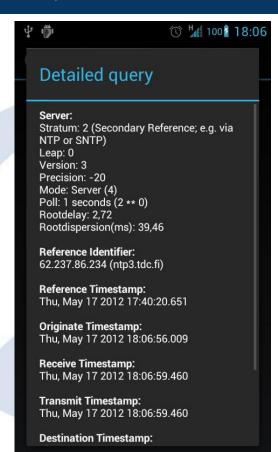
NTP Version 2, private

NTP Version 2, private

NTP Version 2, private

Comment

NTP: NTP Version 2, private


- One single request
- Flooding different
 Monlist items

```
NTP Version 2, private
                                                                                 12609.546781
                                                                                                                                                                               NTP: NTP Version 2, private
                                                                                                                                              123
                                                                                                                     NTP Version 2, private
                                                                                 12609.546911
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
                                                                                                                     NTP Version 2, private
                                                                                 12609.547893
                                                                                                                                                                               NTP: NTP Version 2, private
                                                                                                                                              123
Frame 87: 482 bytes on wire (3856 bits), 482 bytes captur
                                                                                                                     NTP Version 2, private
                                                                                 12609.549695
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
Ethernet II, Src: Cisco 05:9f:0b (00:50:73:05:9f:0b), Dst
                                                                                                                     NTP Version 2, private
                                                                                 12609.551596
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
Internet Protocol Version 4, Src: 109.75.223.1, Dst: 192.
                                                                                                                     NTP Version 2, private
                                                                                 12609.551827
                                                                                                                                                                               NTP: NTP Version 2, private
User Datagram Protocol, Src Port: 123, Dst Port: 6666
                                                                                                                     NTP Version 2, private
                                                                                 12609.552436
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
Network Time Protocol (NTP Version 2, private)
                                                                                                                     NTP Version 2, private
                                                                                 12609.552916
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
 Flags: 0xd7, Response bit: Response, Version number: N
                                                                                                                     NTP Version 2, private
                                                                                 12609.553516
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
 Auth, sequence: 215
                                                                                                                     NTP Version 2, private
                                                                                 12609.554159
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
    Implementation: XNTPD (3)
                                                                                                                     NTP Version 2, private
                                                                                 12609.554850
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
    Request code: MON GETLIST 1 (42)
                                                                                                                     NTP Version 2, private
                                                                                 12609.555316
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
    0000 \dots = Err: No error (0x00)
                                                                                                                     NTP Version 2, private
                                                                                 12609.555754
                                                                                                                                                                               NTP: NTP Version 2, private
     .... 0000 0000 0110 = Number of data items: 6
                                                                                                                     NTP Version 2, private
                                                                                 12609.556518
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
    0000 .... = Reserved: 0x00
                                                                                                                     NTP Version 2, private
                                                                                 12609.557318
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
           0000 0100 1000 = Size of data item: 0x0048
                                                                                                                     NTP Version 2, private
                                                                                                                                                                               NTP: NTP Version 2, private
                                                                                 12609.558086
                                                                                                                                              123
    Monlist item: address: 217.7.239.199:35005
                                                                                                                     NTP Version 2, private
                                                                                 12609.558893
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
    Monlist item: address: 31.19.17.89:40540
                                                                                                                     NTP Version 2, private
                                                                                 12609.559921
                                                                                                                                                                               NTP: NTP Version 2, private
                                                                                                                                              123
   Monlist item: address: 109.234.60.27:123
                                                                                                                     NTP Version 2, private
                                                                                 12609.560483
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
    Monlist item: address: 74.183.220.60:50177
                                                                                                                     NTP Version 2, private
                                                                                 12609.561355
                                                                                                                                              123
                                                                                                                                                                               NTP: NTP Version 2, private
    Monlist item: address: 84.23.80.31:51254
                                                                                                                     NTP Version 2, private
                                                                                                                                                                               NTP: NTP Version 2, private
                                                                                 12609.562154
                                                                                                                                              123
   Monlist item: address: 79.241.128.143:64345
```

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

NTP APPs for your Smartphone

- Different kinds of APPs are available for different platforms
- Useful for checking your capture setup and results too ©

NTP Polling Intervals - RFCs and the Windows Way

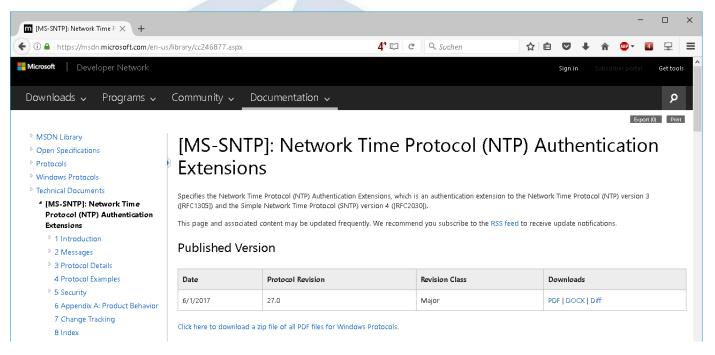

Windows version	NTP.MAXPOLL: Domain controllers	NTP.MAXPOLL: Member /Standalone machines	NTP.MINPOLL: Domain controllers	NTP.MINPOLL: Member/Standalone machines
Windows XP	15	15	6	10
Windows Server 2003	10	15	6	10
Windows Vista	10	15	6	10
Windows Server 2008	10	15	6	10
Windows 7	10	15	6	10
Windows Server 2008 R2	10	15	6	10
Windows 8	10	15	6	10
Windows Server 2012	10	15	6	10
Windows 8.1	10	15	6	10
Windows Server 2012 R2	10	15	6	10
Windows 10	10	15	6	10
Windows Server 2016	10	15	6	10

• RFC 1305

- NTP.MAXPOLL 1024 seconds, which was the maximum with NTPv3
- RFC 5905
 - poll intervals up to 36 hours

Windows Accurate Time

 Is your Windows Capture Engine part of a domain?



SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

MS-SNTP Extensions

 Microsoft has a custom authentication mechanism in their NTP implementation of the Windows Time

Service

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

MS-SNTP Extensions - Wireshark

Decoding with Wireshark not implemented yet ;-)

```
Network Time Protocol (NTP Version 3, server)
  Flags: 0x1c, Leap Indicator: no warning, Version number: NTP Version 3, Mode: server
     Peer Clock Stratum: secondary reference (2)
     Peer Polling Interval: 10 (1024 sec)
     Peer Clock Precision: 0.015625 sec
     Root Delay:
                   0.0313 sec
     Root Dispersion:
                         0.0515 sec
     Reference ID: 192.53.103.104
     Reference Timestamp: May 15, 2017 08:17:12.726792000 UTC
     Origin Timestamp: May 15, 2017 08:29:38.204909000 UTC
     Receive Timestamp: May 15, 2017 08:29:38.226792000 UTC
     Transmit Timestamp: May 15, 2017 08:29:38.226792000 UTC
  Extension

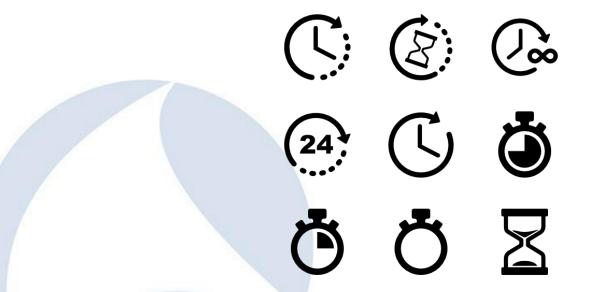
▼ [Expert Info (Warning/Protocol): Extension length 0 < 8]
</p>
           [Extension length 0 < 8]
           [Severity level: Warning]
           [Group: Protocol]
0000 ec f4 bb 1e 59 7e 20 4c 9e a6 5f 46 08 00 45 00
                                                        ....Y~ L .. F..E.
                                                        ..\...~. D#..~...
0010 00 94 5c d5 00 00 7e 11 44 23 0a c0 7e 0d 0a 80
                                                         ...{.{.. .......
0020 08 14 00 7b 00 7b 00 80 15 b9 1c 02 0a fa 00 00
                                                         ..../.5 gh.....
0030 08 00 00 00 0d 2f c0 35 67 68 dc c3 e2 88 ba 0f
0040 14 6f dc c3 e5 72 34 74 f9 a7 dc c3 e5 72 3a 0f
                                                         .o...r4t ....r:.
0050 14 6f dc c3 e5 72 3a 0f 14 6f b5 1d 00 00 01 00
                                                         .o...r:. .o.....
0060 00 00 7f 72 74 7f e2 ab d1 94 0f 01 c6 f4 8c 0d
                                                         ...rt... ......
                                                         .0.l...f .JD\....
0070 03 30 0b 21 d5 85 b8 66 0d 4a 44 5c ef ec b6 ee
0080 26 1a cf 97 23 a9 2d 4f 03 09 fb b0 5f 82 28 63
                                                        &...#.-O .... .(c
                                                        ~h....;1 lm.F...)*
0090 7e 68 e6 15 15 d4 3b 6c 6c 6d 92 46 0e bf 29 2a
00a0 3a d3
```

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

MS-SNTP Extensions – MS Message Analyzer

Det	ails 1					
×	📑 🕆 😽 🏖 😭	Enter search text here 🔑				
<u>.</u>	Vame	Value	Bit Offset	Bit Length	Туре	
	Leap	no warning (0x00)	0	2	Leap	
	Version	3 (0x03)	2	3	Byte	
	Mode	server (0x04)	5	3	Mode	
	Stratum	secondary server(via NTP) (0x02)	8	8	Stratum	
	Poll	10 (0x0A)	16	8	SByte	
	Precision	-6 (0xFA)	24	8	SByte	
	RootDelay	2048 (0x00000800)	32	32	Int32	
	RootDispersion	3375 (0x00000D2F)	64	32	UInt32	
[+ ReferenceIdentifier	192.53.103.104	96	32	Utility.IPv4Address	
	ReferenceTimestamp	05.15.2017 10:17:12.7270000 +02:00 (0xDCC3E288BA0F146F)	128	64	UInt64	
	OriginateTimestamp	05.15.2017 10:29:38.2050000 +02:00 (0xDCC3E5723474F9A7)	192	64	UInt64	
	ReceiveTimestamp	05.15.2017 10:29:38.2270000 +02:00 (0xDCC3E5723A0F146F)	256	64	UInt64	
	TransmitTimestamp	05.15.2017 10:29:38.2270000 +02:00 (0xDCC3E5723A0F146F)	320	64	UInt64	
[- ExtensionField	ExtendedAuthenticator{KeyIdentifier=KeyIdentifierFlags{Rid=1519288320,Sign	384	576	NTP.ExtendedAuthenticator	
	─ KeyIdentifier	KeyIdentifierFlags{Rid=1519288320,Sign=0}	384	32	NTP.KeyIdentifierFlags	
	Rid	(1011010100011101000000000000000000000	384	31	Int32	
	Sign	(0) (0x00000000)	415	1	Int32	
	Reserved	1 (0x01)	416	8	Byte	
	Flags	0 (0x00)	424	8	Byte	
	ClientHashIDHints	0 (0x00)	432	8	Byte	
	SignatureHashID	0 (0x00)	440	8	Byte	
	CryptoChecksum	Blob{Data=binary[127,114,116,127,226,171,209,148,15,1,198,244,140,13,3,48,	448	512	Utility.Blob	
	Data	binary[127,114,116,127,226,171,209,148,15,1,198,244,140,13,3,48,11,33,213,	448	512	BinaryValue	

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017


Windows w32tm as a NTP client for testing

```
×
 C:\Windows\system32\cmd.exe - w32tm.exe /stripchart/computer:192.168.0.107
C:\Users\wfischer>
C:\Users\wfischer>w32tm.exe /stripchart /computer:192.168.0.107
Tracking 192.168.0.107 [192.168.0.107:123].
The current time is 17.06.2017 14:11:35.
14:11:35 d:+00.0612579s o:+00.0122560s
14:11:37 d:+00.0420193s o:+00.0010318s
14:11:39 d:+00.0507323s o:+00.0070941s
14:11:41 d:+00.0471529s o:+00.0045452s
14:11:43 d:+00.0418638s o:+00.0011184s
14:11:45 d:+00.0515372s o:+00.0068675s
14:11:47 d:+00.0457182s o:+00.0049659s
14:11:49 d:+00.0423317s o:+00.0015196s
14:11:51 d:+00.0529866s o:+00.0076339s
14:11:54 d:+00.0502840s o:+00.0043264s
14:11:56 d:+00.0471392s o:+00.0045586s
```

AGENDA

- Time basic
- Time Protocols
- NTP
- PTP
- Wrap-UP

🌠 code,wireshark Code Review 🗙 🗍

 -rw-r--r 9611 packet-prp.c
 blob | history | raw

 -rw-r--r 308391 packet-ptp.c
 blob | history | raw

 -rw-r--r 1206 packet-ptp.h
 blob | history | raw

IEEE 1588 Precision Time Protocol (PTP)

- IEEE 1588 Precision Time Protocol (PTP) is a highly accurate distributed time synchronization protocol for packet network
- IEEE 1588-2008, as known as IEEE 1588v2 or PTPv2 is the latest IEEE 1588 standard
 - Can direct map to Ethernet, or UDP IPv4.
 - Packet based timing distribution and synchronization.
 - Nanosecond to sub-microsecond accuracy
 - Low administrative effort, easy to manage and maintain
 - · Low cost and low resource use, works on high-end or low-end device
 - Support redundant and fault-tolerant
 - No need to implement costly GPS or other dedicated timing network

PTP Overview

- Peer-to-peer transparent clocks
- Time format
- Architectural choices
- Best master selection
- PTP profiles and conformance
- General optional features
- State configuration options
- Compatibility requirements
- Transport specific field
- Security
- Transport of cumulative frequency offset information

Frequency and time Synchronization and Strategies

- Hierarchical architecture for clock and time distribution
- Accuracy better than NTP (from milliseconds to nanoseconds)
- Distribute Time to places where GPS would be impractical (e.g. DC)
- BMC (Best Master Clock) algorithm defines the "Grand Master" used to synchronize a clock domain

PTPv2 Transport

- PTP over IPv4
- PTP over IPv6
- PTP over Ethernet
 - Note: 802.1AS over Ethernet (802.3) qualifies as a Profile of IEEE 1588-2008
- PTP over DeviceNET
- PTP over ControlNET
- PTP over IEC 61158 Type 10 (Fieldbus)

PTP Packet/Frame Details

- Communication between master and slave use multicast group address
- Event messages use UDP Port 319
- General message use UDP port 320
- Above applies to both unicast and multicast
- IANA also reserved additional multicast address for PTP, currently it's not used
 - 224.0.1.130
 - 224.0.1.131
 - 224.0.1.132

PTP addresses

Ethernet and IP PTPv2 (destination address)	2 addressing	IANA assignment	Comments
PTP primary for all except pdelay messages	MAC (Ethernet)	01-1B-19-00-00	From OUI 00-1B-19 assigned to IEEE I&M Society TC9.
	IPv4	224.0.1.129	Corresponds to PTPv1 default domain number.
	IPv6	FF0X:0:0:0:0:0:0:181	Value of X defines in section 2.7 of [RFC4291].
PTP pdelay for pdelay messages Note: might be used for all PTP messages in the	MAC (Ethernet)	01-80-C2-00-00-0E	Allows transmission over Ethernet port blocked by any type of Spanning Tree Protocol.
scope of the address	IPv4	224.0.0.107	TTL must be set to 1 and cannot be routed.
	IPv6	FF02:0:0:0:0:0:0:6B	HL must be set to 1 and cannot be routed.

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

PTPv2 / General messages / Announce

```
> Frame 17596: 78 bytes on wire (624 bits), 78 bytes captured (624 bits) on inter
> Frame 4: 109 bytes on wire (872 bits), 109 bytes captured (872 bits) on interface 0
                                                                                         Ethernet II, Src: Meinberg 00:8f:ce (ec:46:70:00:8f:ce), Dst: IeeeI&MS 00:00:00
  Ethernet II, Src: Meinberg 00:8f:ce (ec:46:70:00:8f:ce), Dst: IPv4mcast 01:81 (01:00:5e:00:01:81)
                                                                                           > Destination: IeeeI&MS_00:00:00 (01:1b:19:00:00:00)
  Internet Protocol Version 4, Src: 172.27.75.10, Dst: 224.0.1.129
                                                                                           Source: Meinberg 00:8f:ce (ec:46:70:00:8f:ce)
  User Datagram Protocol, Src Port: 320, Dst Port: 320
                                                                                             Type: PTPv2 over Ethernet (IEEE1588) (0x88f7)
Precision Time Protocol (IEEE1588)
                                                                                         Precision Time Protocol (IEEE1588)
    0000 .... = transportSpecific: 0x0
                                                                                             0000 .... = transportSpecific: 0x0
    .... 1011 = messageId: Announce Message (0xb)
                                                                                              .... 1011 = messageId: Announce Message (0xb)
    .... 0010 = versionPTP: 2
                                                                                              .... 0010 = versionPTP: 2
    messageLength: 64
                                                                                             messageLength: 64
    subdomainNumber: 0
                                                                                             subdomainNumber: 0

✓ flags: 0x003c

▼ flags: 0x003c

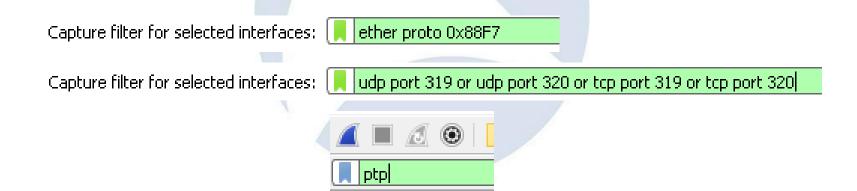
       0... = PTP SECURITY: False
                                                                                                0... = PTP SECURITY: False
       .0.. .... = PTP profile Specific 2: False
                                                                                                .0.. .... = PTP profile Specific 2: False
       ..... = PTP profile Specific 1: False
                                                                                                ..... .... = PTP profile Specific 1: False
       .... .0.. .... = PTP UNICAST: False
                                                                                                .... .0.. .... = PTP_UNICAST: False
       .... ..0. .... = PTP TWO STEP: False
       .... ... 0 .... = PTP_ALTERNATE_MASTER: False
                                                                      01:1B:19:00:00:00
       .... - FREQUENCY TRACEABLE: True
       .... = TIME_TRACEABLE: True
                                                                      for non-peer-delay measurement mechanism messages
       .... 1... = PTP TIMESCALE: True
                                                                       (Announce, Sync, Follow_up, Delay_Req, Delay_Resp)
       .... .... .1.. = PTP UTC REASONABLE: True
       .... .... ... .. .. .. 9TP LI 59: False
       .... 0 = PTP LI 61: False

▼ correction: 0.000000 nanoseconds

                                                                      01:80:C2:00:00:00:0E
       correction: Ns: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
                                                                      for peer-delay measurement mechanism messages
    ClockIdentity: 0xec4670fffe008fce
                                                                       (Pdelay_Req, Pdelay_Resp, Pdelay_Resp_Follow_up)
    SourcePortID: 1
    sequenceId: 38302
    control: Other Message (5)
                                                                                             control: Other Message (5)
    logMessagePeriod: 0
                                                                                             logMessagePeriod: 0
```

originTimestamp (seconds): 0

originTimestamp (seconds): 0


PTP ToD

- IEEE 1588v2 PTP is capable of frequency, phase and time-of-day synchronization
- Telecommunication industry requires the synchronization of frequency, phase and time-ofday
- Most of the applications in financial institute and data center networks are interested in Time-of-Day synchronization

PTP – Wireshark Capture and Display Filter

- udp port 319 or udp port 320 or tcp port 319 or tcp port 320
- for PTP over Ethernet packets, specify:

"ether proto 0x88F7"

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

PTP Clock Types

Ordinary Clock (OC)

 Has a single PTP port in a domain and maintains the timescale of the domain

Boundary Clock (BC)

 Has multiple PTP ports in a domain and maintains the timescale of the domain

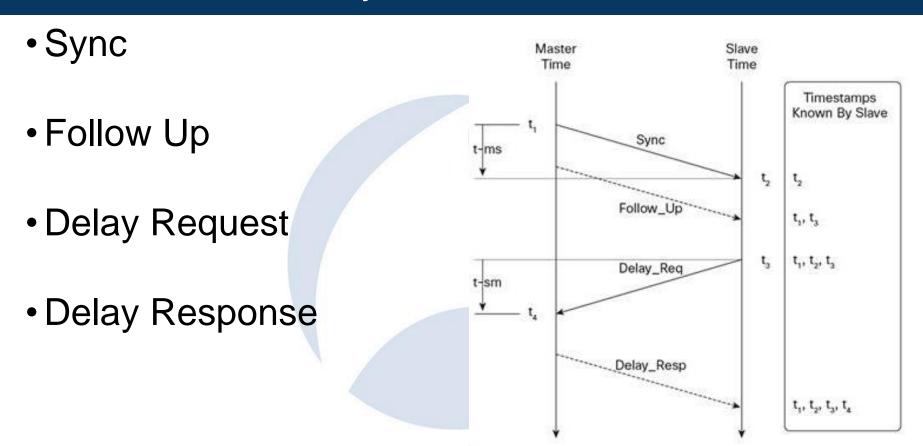
Transparent Clock

- Measures the time taken for a PTP event message to transit the device
 - Peer-to-peer transparent clocks (P2P TC) provide corrections for the propagation delay of the link in addition to the transit time
 - End-to-end transparent clock (E2E TC)

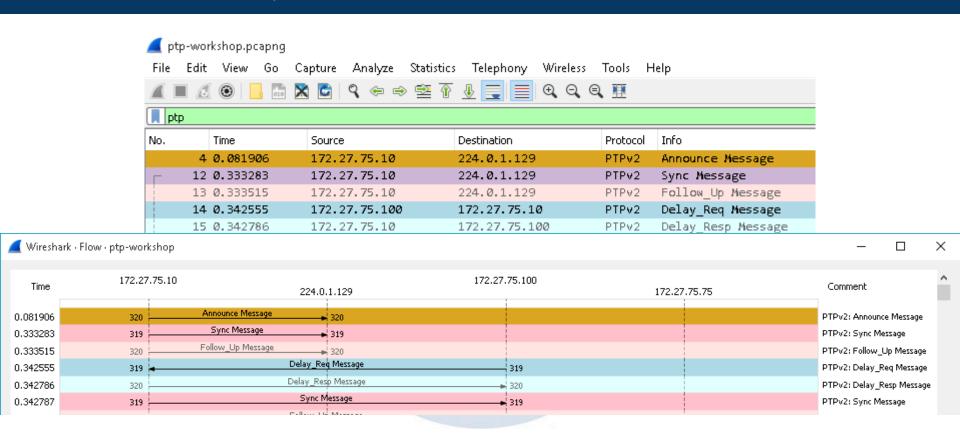
PTP Clock Types

Slave clock

 A slave clock receives the time information from a master clock by synchronizing itself with the master clock. It does not redistribute the time to another clock


Grandmaster clock (GM)

 A grandmaster clock is the highest-ranking clock within its PTP domain and is the primary reference source for all other PTP elements.


PTP 1-step and 2-step clocks

- 1-step clock updates accurate timestamp (t1) in Sync message
- 2-step clock sends accurate timestamp (t1) in a Follow_Up message
 - Simplify design while avoiding queuing noise
 - Ease integration of security extensions

PTP Clock Synchronization Process

PTP Clock Synchronization Process in Wireshark

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

PTPv2 Sync Message – verify by your own

- When was this?
- Was the capture engine in time sync?
 - Hint: Have a look at the originTimestamp and convert it

```
Frame 12: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on interface 0
Interface id: 0 (\Device\NPF_{BD5BE3FE-84FE-4398-A232-C6D212432BE8})
Encapsulation type: Ethernet (1)
Arrival Time: Mar 9, 2017 16:33:45.864628000 W. Europe Standard Time
```

```
originTimestamp (seconds): 1489073662
originTimestamp (nanoseconds): 870158024
```

```
> User Datagram Protocol, Src Port: 319, Dst Port: 319
Precision Time Protocol (IEEE1588)

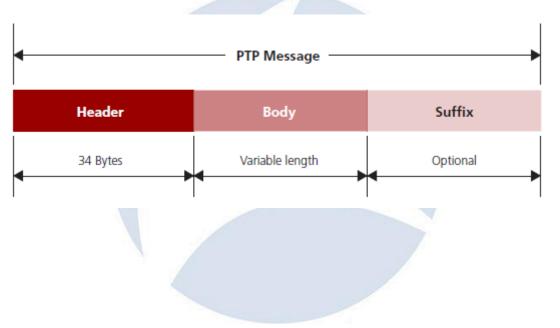
✓ 0000 .... = transportSpecific: 0x0
       ...0 .... = V1 Compatibility: False
     .... 0000 = messageId: Sync Message (0x0)
     .... 0010 = versionPTP: 2
    messageLength: 44
     subdomainNumber: 0

▼ flags: 0x0200
       0... --- = PTP_SECURITY: False
       .0.. .... = PTP profile Specific 2: False
       ..0. .... = PTP profile Specific 1: False
       .... .0.. .... = PTP_UNICAST: False
       .... ..1. .... = PTP TWO STEP: True
       .... - PTP_ALTERNATE_MASTER: False
       .... - FREQUENCY TRACEABLE: False
       .... = TIME TRACEABLE: False
       .... .... 0... = PTP_TIMESCALE: False
       .... .... .0.. = PTP UTC REASONABLE: False
       .... .... ... .. .. .. 9TP LI 59: False
       .... .... .... 0 = PTP LI 61: False

▼ correction: 0.000000 nanoseconds

       correction: Ns: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
    ClockIdentity: 0xec4670fffe008fce
     SourcePortID: 1
     sequenceId: 38302
    control: Sync Message (0)
    logMessagePeriod: 0
     originTimestamp (seconds): 1489073662
     originTimestamp (nanoseconds): 870158024
     01 00 5e 00 01 81 ec 46 70 00 8f ce 08 00 45 00
                                                     ..^....F p.....E.
     00 48 28 f7 40 00 05 11 74 07 ac 1b 4b 0a e0 00
                                                     .H(.@... t...K...
             3f 01 3f 00 34 10 18 00 02 00 2c 00 00
                                                     ...?.?.4 ........
           00 00 00 00 00 00 00 00 00 00 00 00 ec 46
                                                     .....F
     70 ff fe 00 8f ce 00 01 95 9e 00 00 00 00 58 c1
                                                    p....X.
0050 75 fe 33 dd 8e c8
                                                    u.3...
```

PTPv2 Transmission


- Mode:
 - Unicast
 - Multicast
- Rates:
 - variable
- Timeouts
 - variable
- TLV and Extensions

PTP Grand Master (GM) selection

- GM-capable stations advertise that fact via ANNOUNCE messages
 - If station hears from station with "better" clock, does not send ANNOUNCE
- Settable "Priority" field can override clock quality
- MAC address is tie breaker
 - Bridges drop all inferior ANNOUNCE messages
- Forward only the best
 - Last one standing is Grand Master for the LAN
- GM is the root of the timing tree
- GM periodically sends the current time

PTP Message Formats

All PTP Messages consist of a header, body and optional suffix

PTPv2 / General messages / Announce

```
> Frame 4: 109 bytes on wire (872 bits), 109 bytes captured (872 bits) on interface 0
                                                                                               Frame 17596: 78 bytes on wire (624 bits), 78 bytes captured (624 bits) on inter
                                                                                              Ethernet II, Src: Meinberg 00:8f:ce (ec:46:70:00:8f:ce), Dst: IeeeI&MS 00:00:00
 Ethernet II, Src: Meinberg 00:8f:ce (ec:46:70:00:8f:ce), Dst: IPv4mcast 01:81 (01:00:5e:00:01:81)
                                                                                                 Destination: IeeeI&MS 00:00:00 (01:1b:19:00:00:00)
  Internet Protocol Version 4, Src: 172.27.75.10, Dst: 224.0.1.129
                                                                                                 > Source: Meinberg 00:8f:ce (ec:46:70:00:8f:ce)
  User Datagram Protocol, Src Port: 320, Dst Port: 320
                                                                                                   Type: PTPv2 over Ethernet (IEEE1588) (0x88f7)
Precision Time Protocol (IEEE1588)
                                                                                               Precision Time Protocol (IEEE1588)
    0000 .... = transportSpecific: 0x0
                                                                                                   0000 .... = transportSpecific: 0x0
     .... 1011 = messageId: Announce Message (0xb)
                                                                                                    .... 1011 = messageId: Announce Message (0xb)
     .... 0010 = versionPTP: 2
                                                                                                   .... 0010 = versionPTP: 2
     messageLength: 64
                                                                                                   messageLength: 64
     subdomainNumber: 0
                                                                                                   subdomainNumber: 0

✓ flags: 0x003c

▼ flags: 0x003c

       0... = PTP SECURITY: False
                                                                                                      0... = PTP SECURITY: False
       .0.. .... = PTP profile Specific 2: False
                                                                                                      .0.. .... = PTP profile Specific 2: False
       ..... = PTP profile Specific 1: False
                                                                                                      ..... .... = PTP profile Specific 1: False
       .... .0.. .... = PTP UNICAST: False
                                                                                                      .... .0.. .... = PTP_UNICAST: False
       .... ..0. .... = PTP TWO STEP: False
                                                                                                      .... ..0. .... = PTP TWO STEP: False
       .... ... 0 .... = PTP_ALTERNATE_MASTER: False
                                                                                                      .... - PTP ALTERNATE MASTER: False
       .... - FREQUENCY TRACEABLE: True
                                                                                                      .... ..... = FREQUENCY TRACEABLE: True
       .... = TIME TRACEABLE: True
                                                                                                      .... = TIME TRACEABLE: True
       .... 1... = PTP TIMESCALE: True
                                                                                                      .... 1... = PTP_TIMESCALE: True
       .... .... .1.. = PTP UTC REASONABLE: True
                                                                                                      .... .... .1.. = PTP UTC REASONABLE: True
       .... .... ... .. .. .. 9TP LI 59: False
                                                                                                      .... .... ..0. = PTP_LI_59: False
       .... 0 = PTP LI 61: False
                                                                                                      .... 0 = PTP LI 61: False

▼ correction: 0.000000 nanoseconds

✓ correction: 0.000000 nanoseconds

       correction: Ns: 0 nanoseconds
                                                                                                      correction: Ns: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
                                                                                                      correctionSubNs: 0.000000 nanoseconds
     ClockIdentity: 0xec4670fffe008fce
                                                                                                   ClockIdentity: 0xec4670fffe008fce
     SourcePortID: 1
                                                                                                   SourcePortID: 1
     sequenceId: 38302
                                                                                                   sequenceId: 999
     control: Other Message (5)
                                                                                                   control: Other Message (5)
     logMessagePeriod: 0
                                                                                                   logMessagePeriod: 0
     originTimestamp (seconds): 0
                                                                                                   originTimestamp (seconds): 0
```

PTP Message Header

```
    Precision Time Protocol (IEEE1588)

  > 0000 .... = transportSpecific: 0x0
     .... 0000 = messageId: Sync Message (0x0)
     .... 0010 = versionPTP: 2
    messageLength: 44
    subdomainNumber: 0

✓ flags: 0x0200
       0... ---- = PTP SECURITY: False
       .0.. .... = PTP profile Specific 2: False
       ..0. .... = PTP profile Specific 1: False
       .... .0.. .... = PTP UNICAST: False
       .... ..1. .... = PTP_TWO_STEP: True
       .... ...0 .... = PTP_ALTERNATE_MASTER: False
       .... - FREQUEICY TRACEABLE: False
       .... = TIME_TRACEABLE: False
       .... .... 0... = PTP_TIMESCALE: False
       .... .... .0.. = PTP UTC REASONABLE: False
       .... .... ...0. = PTP_LI 59: False
       .... .... .... 0 = PTP LI 61: False
    correction: 0.000000 nanoseconds
       correction: Us: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
    ClockIdentity: 0x6805cafffe39dabc
    SourcePortID: 1
    sequenceId: 387
    control: Sync Message (0)
    logMessagePeriod: 0
    originTimestamp (seconds): 0
```

originTimestamp (nanoseconds): 0

Common part of PTP Message Header

		0-4-4-	O.CC.						
7	6	5	4	3	2	1	0	Octets	Offset
tr	anspo	rtSpec	eific	1	nessa	geTyp	e	1	0
	res	erved			versi	onPTI)	1	1
		n	nessage]	Lengt	th			2	2
	domainNumber								4
	reserved								5
	flags								6
	correctionField								8
	reserved								16
	sourcePortIdentity								20
	sequenceId							2	30
	controlField								32
		log	Messag	eInte	rval	·		1	33

Source: IEEE 1588-2008, Table 18

PTP Timestamps

- PTP use 80 bit-Timestamps
 - They consist of a 48-bit part for seconds and a 32-bit part for nanosecond
 - The time scale rolls over every 2⁴⁸ seconds (8.925.512 years)
 - Theoretical resolution of 2³² nanoseconds
 - Timescale from TAI
 - also alternative timescale possible

```
control: Sync Message (0)
    logMessagePeriod: 0
    originTimestamp (seconds): 1489073662
    originTimestamp (nanoseconds): 870158024
     01 00 5e 00 01 81 ec 46 70 00 8f ce 08 00 45 00
                                                  ..^....F p.....E.
     00 48 28 f7 40 00 05 11 74 07 ac 1b 4b 0a e0 00
0010
                                                   .H(.@... t...K...
                                                  ...?.?.4 .....,..
0020
     01 81 01 3f 01 3f 00 34 10 18 00 02 00 2c 00 00
     70 ff fe 00 8f ce 00 01 95 9e 00 00 00 00 58 c
                                                  p.....X
          33 dd 8e c8
0050
                                                   u.3...
```

Time.sec
Seconds
48 bit

Time.Frac
Nanoseconds
32 bit

PTPv2 Message Types

- Event messages (need to be accurately time stamped)
 - Sync
 - Delay_Req
 - Pdelay_Req
 - Pdelay_Resp
- General messages (not time stamped)
 - Follow_Up
 - Delay_Resp
 - Pdelay_Resp_Follow_Up
 - Announce
 - Signaling and Management

PTPv2 Message Types

```
ptp.v2.flags.specific2 · PTP profile Specific 2
ptp.v2.flags.timescale · PTP_TIMESCALE
ptp.v2.flags.timetraceable - TIME_TRACEABLE
ptp.v2.flags.twostep · PTP TWO STEP
ptp.v2.flags.unicast · PTP_UNICAST
ptp.v2.flags.utcreasonable · PTP_UTC_REASONABLE
ptp.v2.fu.preciseorigintimestamp.nanoseconds · preciseOriginTimestamp (nanoseconds)
ptp.v2.fu.preciseorigintimestamp.seconds · preciseOriginTimestamp (seconds)
ptp.v2.logmessageperiod - logMessagePeriod
ptp.v2.messageid · messageld
ptp.v2.messagelength - messageLength
ptp.v2.mm.action - action
ptp.v2.mm.AlternateMulticastSyncInterval · Alternate multicast sync interval
ptp.v2.mm.announceReceiptTimeout - announceReceiptTimeout
ptp.v2.mm.boundaryhops · boundaryHops
```

Value (Unsigned integer, 1 byte) l0xb Predefined Values Sync Message Delay_Req Message Path_Delay_Req Message Path_Delay_Resp Message Follow_Up Message Delay_Resp Message Path_Delay_Resp_Follow_Up Message Announce Message Signalling Message Management Message

Event messages

General messages

PTP – Sync Message (0x0)

```
> Frame 12: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on interface 0
                                                                                            Sync Message Format
Ethernet II, Src: Meinberg 00:8f:ce (ec:46:70:00:8f:ce), Dst: IPv4mcast 01:81 (01:00:5e:00:01:81)
> Internet Protocol Version 4, Src: 172.27.75.10, Dst: 224.0.1.129
                                                                                                                 Bits
> User Datagram Protocol, Src Port: 319, Dst Port: 319
                                                                                                                                                   Offset
                                                                                                                                            Octets
                                                                                                         5
Precision Time Protocol (IEEE1588)

▼ 0000 .... = transportSpecific: 0x0
                                                                                                             header (13.3)
                                                                                                                                             34
                                                                                                                                                     0
       ...0 .... = V1 Compatibility: False
                                                                                                            originTimestamp
                                                                                                                                             10
                                                                                                                                                     34
    .... 0000 = messageId: Sync Message (0x0)
     .... 0010 = versionPTP: 2
    messageLength: 44
    subdomainNumber: 0

▼ flags: 0x0200
       0... ---- = PTP SECURITY: False
       .0.. .... = PTP profile Specific 2: False
       ..0. .... = PTP profile Specific 1: False
       .... .0.. .... = PTP_UNICAST: False
       .... ..1. .... = PTP_TWO_STEP: True
       .... = PTP ALTERNATE MASTER: False
       .... - FREQUENCY TRACEABLE: False
       .... = TIME TRACEABLE: False
       .... 0... = PTP_TIMESCALE: False
       .... .... .0.. = PTP_UTC_REASONABLE: False
       .... .... .... ... ... 9TP LI 59: False
       .... 0 = PTP LI 61: False

▼ correction: 0.000000 nanoseconds

       correction: Ns: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
    ClockIdentity: 0xec4670fffe008fce
    SourcePortID: 1
     sequenceId: 38302
                                                                                                    Event messages
    control: Sync Message (0)
    logMessagePeriod: 0
    originTimestamp (seconds): 1489073662
    originTimestamp (nanoseconds): 870158024
```

PTP - Delay_Req Message (0x1)

```
> Frame 14: 90 bytes on wire (720 bits), 90 bytes captured (720 bits) on interface 0
                                                                                             Delay Req Message Format
Ethernet II, Src: Meinberg 00:8f:bf (ec:46:70:00:8f:bf), Dst: Meinberg 00:8f:ce (ec:46:70:00:8f:ce)
Internet Protocol Version 4, Src: 172.27.75.100, Dst: 172.27.75.10
                                                                                                                 Bits
> User Datagram Protocol, Src Port: 319, Dst Port: 319
                                                                                                                                                 Offset
                                                                                                                                          Octets

▼ Precision Time Protocol (IEEE1588)

                                                                                                              header (13.3)
                                                                                                                                           34
                                                                                                                                                   0

▼ 0000 .... = transportSpecific: 0x0
       ...0 .... = V1 Compatibility: False
                                                                                                             originTimestamp
                                                                                                                                                  34
                                                                                                                                           10
     .... 0001 = messageId: Delay Req Message (0x1)
     .... 0010 = versionPTP: 2
    messageLength: 48
     subdomainNumber: 0

▼ flags: 0x0400
       0... = PTP SECURITY: False
       .0.. .... = PTP profile Specific 2: False
       ..0. .... = PTP profile Specific 1: False
       .... .1.. .... = PTP UNICAST: True
       .... ..0. .... = PTP TWO STEP: False
       .... = PTP_ALTERNATE_MASTER: False
       .... .... .. .. = FREQUENCY_TRACEABLE: False
       .... = TIME TRACEABLE: False
       .... 0... = PTP_TIMESCALE: False
       .... .... .0.. = PTP UTC REASONABLE: False
       .... .... ...0. = PTP LI 59: False
       .... 0 = PTP LI 61: False
  correction: 0.000000 nanoseconds
       correction: Ns: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
    ClockIdentity: 0xec4670fffe008fbf
     SourcePortID: 1
     sequenceId: 529
                                                                                                   Event messages
    control: Delay Reg Message (1)
    logMessagePeriod: 127
     originTimestamp (seconds): 1489073662
     originTimestamp (nanoseconds): 879479141
```

PTP - Path_Delay_Req Message (0x2)

```
> Frame 1: 68 bytes on wire (544 bits), 68 bytes captured (544 bits)
                                                                                            Pdelay Reg Message Format
> Ethernet II, Src: RichardH 00:09:ba (00:80:63:00:09:ba), Dst: LLDP Multicast (01:80:c2:00:00:0e)
Precision Time Protocol (IEEE1588)
                                                                                                              Bits
                                                                                                                                    Octets
                                                                                                                                           Offset

▼ 0000 .... = transportSpecific: 0x0
       \dots 0 \dots = 802.1as conform: False
                                                                                                                                      34
                                                                                                                                             0
                                                                                                           header (13.3)
     .... 0010 = messageId: Path Delay Req Message (0x2)
                                                                                                         originTimestamp
                                                                                                                                             34
     .... 0010 = versionPTP: 2
                                                                                                                                             44
                                                                                                            reserved
    messageLength: 54
    subdomainNumber: 0

▼ flags: 0x0000
       0... = PTP SECURITY: False
       .0.. .... = PTP profile Specific 2: False
       ..... = PTP profile Specific 1: False
       .... .0.. .... = PTP UNICAST: False
       .... .. .. .... = PTP TWO STEP: False
       .... = PTP_ALTERNATE_MASTER: False
       .... ..... ..... = FREQUENCY_TRACEABLE: False
       .... = TIME_TRACEABLE: False
       .... 0... = PTP TIMESCALE: False
       .... .... .0.. = PTP UTC REASONABLE: False
       .... .... ...0. = PTP_LI_59: False
       .... 0 = PTP LI 61: False
  correction: 0.000000 nanoseconds
       correction: Ns: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
    ClockIdentity: 0x008063ffff0009ba
     SourcePortID: 2
     sequenceId: 1118
    control: Other Message (5)
                                                                                              Event messages
    logMessagePeriod: 15
    originTimestamp (seconds): 1169232201
     originTimestamp (nanoseconds): 474052852
```

PTP - Path_Delay_Resp Message (0x3)

```
> Frame 1: 68 bytes on wire (544 bits), 68 bytes captured (544 bits)
                                                                                            Pdelay Resp Message Format
 Ethernet II, Src: HonHaiPr 15:ad:ad (00:22:68:15:ad:ad), Dst: LLDP_Multicast (01:80:c2:00:00:0e)
Precision Time Protocol (IEEE1588)
                                                                                                                Bits

▼ 0001 .... = transportSpecific: 0x1
                                                                                                                                           Octets
                                                                                                                                                   Offset
       ...1 .... = 802.1as conform: True
    .... 0011 = messageId: Path Delay Resp Message (0x3)
                                                                                                             header (13.3)
                                                                                                                                             34
                                                                                                                                                     0
     .... 0010 = versionPTP: 2
                                                                                                                                                    34
                                                                                                        receiveReceiptTimestamp
                                                                                                                                             10
    messageLength: 54
    subdomainNumber: 0
                                                                                                          requestingPortIdentity
                                                                                                                                                     44
                                                                                                                                             10

▼ flags: 0x0000
       0... = PTP SECURITY: False
       .0.. .... = PTP profile Specific 2: False
       ..... = PTP profile Specific 1: False
       .... .0.. .... = PTP UNICAST: False
       .... ..0. .... = PTP TWO STEP: False
       .... ... 0 .... = PTP ALTERNATE MASTER: False
       .... - FREQUENCY_TRACEABLE: False
       .... = TIME_TRACEABLE: False
       .... 0... = PTP TIMESCALE: False
       .... .... .0.. = PTP UTC REASONABLE: False
       .... .... ... .. .. .. 9TP LI 59: False
       .... 0 = PTP LI 61: False
  correction: 0.000000 nanoseconds
       correction: Ns: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
    ClockIdentity: 0x002268fffe15adad
    SourcePortID: 1
    sequenceId: 128
    control: Other Message (5)
    logMessagePeriod: 1
                                                                                                    Event messages
    requestreceiptTimestamp (seconds): 1273706546
    requestreceiptTimestamp (nanoseconds): 503340000
    requestingSourcePortIdentity: 0x005043fffe000101
    requestingSourcePortId: 0
```

PTP - Follow_Up Message (0x8)

```
Frame 13: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on interface 0
                                                                                             Follow Up Message Format
  Ethernet II, Src: Meinberg 00:8f:ce (ec:46:70:00:8f:ce), Dst: IPv4mcast 01:81 (01:00:5e:00:01:81)
Internet Protocol Version 4, Src: 172.27.75.10, Dst: 224.0.1.129
                                                                                                                 Bits
 User Datagram Protocol, Src Port: 320, Dst Port: 320
                                                                                                                                           Octets
                                                                                                                                                  Offset

▼ Precision Time Protocol (IEEE1588)

                                                                                                                                            34

▼ 0000 .... = transportSpecific: 0x0
                                                                                                              header (13.3)
                                                                                                                                                    0
       ...0 .... = V1 Compatibility: False
                                                                                                          preciseOriginTimestamp
                                                                                                                                            10
                                                                                                                                                    34
     .... 1000 = messageId: Follow Up Message (0x8)
     .... 0010 = versionPTP: 2
    messageLength: 44
     subdomainNumber: 0
  ∨ flags: 0x0000
       0... = PTP SECURITY: False
       .0.. .... = PTP profile Specific 2: False
       ..... = PTP profile Specific 1: False
       .... .0.. .... = PTP UNICAST: False
       .... ..0. .... = PTP_TWO_STEP: False
       .... = PTP_ALTERNATE_MASTER: False
       .... = FREQUENCY_TRACEABLE: False
       .... = TIME_TRACEABLE: False
       .... 0... = PTP TIMESCALE: False
       .... .... .0.. = PTP UTC REASONABLE: False
       .... .... .... ... ... 9TP LI 59: False
       .... .... ... 0 = PTP LI 61: False

✓ correction: 0.000000 nanoseconds

       correction: Ns: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
    ClockIdentity: 0xec4670fffe008fce
     SourcePortID: 1
     sequenceId: 38302
                                                                                          General messages
    control: Follow Up Message (2)
    logMessagePeriod: 0
    preciseOriginTimestamp (seconds): 1489073662
    preciseOriginTimestamp (nanoseconds): 870210033
```

PTP - Delay_Resp Message (0x9)

```
> Frame 15: 173 bytes on wire (1384 bits), 173 bytes captured (1384 bits) on interface 0
                                                                                              Delay Resp Message Format
> Ethernet II, Src: Meinberg 00:8f:ce (ec:46:70:00:8f:ce), Dst: Meinberg 00:8f:bf (ec:46:70:00:8f:bf)
> Internet Protocol Version 4, Src: 172.27.75.10, Dst: 172.27.75.100
                                                                                                                     Bits
> User Datagram Protocol, Src Port: 320, Dst Port: 320
                                                                                                                                                          Offset
                                                                                                                                                 Octets
Precision Time Protocol (IEEE1588)

▼ 0000 .... = transportSpecific: 0x0
                                                                                                                 header (13.3)
                                                                                                                                                   34
                                                                                                                                                           0
       ...0 .... = V1 Compatibility: False
    .... 1001 = messageId: Delay Resp Message (0x9)
                                                                                                               receiveTimestamp
                                                                                                                                                   10
                                                                                                                                                           34
     .... 0010 = versionPTP: 2
                                                                                                              requestingPortIdentity
                                                                                                                                                   10
                                                                                                                                                           44
    messageLength: 128
    subdomainNumber: 0

▼ flags: 0x0400
       0... = PTP_SECURITY: False
       .0.. .... = PTP profile Specific 2: False
       ..... .... = PTP profile Specific 1: False
       .... .1.. .... = PTP_UNICAST: True
       .... .. 0. .... = PTP TWO STEP: False
       .... = PTP_ALTERNATE_MASTER: False
       .... .... .. .. = FREQUENCY TRACEABLE: False
       .... = TIME TRACEABLE: False
       .... 0... = PTP TIMESCALE: False
       .... .... .0.. = PTP_UTC_REASONABLE: False
       .... .... .... ..0. = PTP LI 59: False
       .... 0 = PTP LI 61: False

✓ correction: 0.000000 nanoseconds

       correction: Ns: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
    ClockIdentity: 0xec4670fffe008fce
    SourcePortID: 1
    sequenceId: 529
    control: Delay Resp Message (3)
    logMessagePeriod: 127
                                                                                               General messages
    receiveTimestamp (seconds): 1489073662
    receiveTimestamp (nanoseconds): 879482261
    requestingSourcePortIdentity: 0xec4670fffe008fbf
```

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

requestingSourcePortId: 1

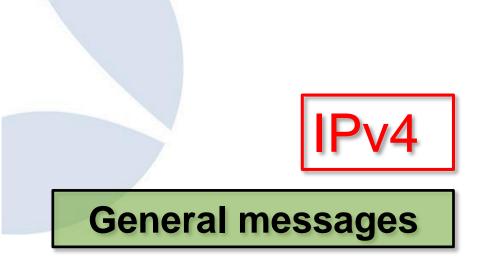
PTP - Path_Delay_Resp_Follow_Up Message (0xa)

```
> Frame 42: 96 bytes on wire (768 bits), 96 bytes captured (768 bits)
> Ethernet II, Src: Accedian 0a:14:a3 (00:15:ad:0a:14:a3), Dst: Fujitsu 1c:44:25 (00:e0:00:1c:44:29
Internet Protocol Version 4, Src: 192.168.1.74, Dst: 192.168.1.159
> User Datagram Protocol, Src Port: 320, Dst Port: 320

→ Precision Time Protocol (IEEE1588)

▼ 0000 .... = transportSpecific: 0x0
       ...0 .... = V1 Compatibility: False
     .... 1100 = messageId: Signalling Message (0xc)
     .... 0010 = versionPTP: 2
     messageLength: 54
     subdomainNumber: 0

✓ flags: 0x0400
       0... - PTP SECURITY: False
       .0.. .... = PTP profile Specific 2: False
       ..0. .... = PTP profile Specific 1: False
       .... .1.. .... = PTP UNICAST: True
       .... ..0. .... = PTP_TWO STEP: False
       .... ... 0 .... = PTP ALTERNATE MASTER: False
       .... .... .. 0. .... = FREQUENCY TRACEABLE: False
       .... = TIME TRACEABLE: False
       .... .... 0... = PTP TIMESCALE: False
       .... .... .0.. = PTP UTC REASONABLE: False
       .... .... ... .. .. .. 9TP LI 59: False
       .... 0 = PTP LI 61: False


▼ correction: 0.000000 nanoseconds

       correction: Ns: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
     ClockIdentity: 0x0015adfffe0a14a0
     SourcePortID: 1
     sequenceId: 21
     control: Other Message (5)
     logMessagePeriod: 127
     targetPortIdentity: 0x00e000fffe1c4425
     targetPortId: 1
  tlvTvpe: Request unicast transmission (4)
       lengthField: 6
       1011 .... = messageType: Announce Message (0xb)

▼ logInterMessagePeriod: 1
          period: every 2 seconds
          rate: 0.5 packets/sec
```

durationField: 300 seconds

(5)	Pdelay_Resp_Follow_Up Message Format									
	Bits								Octets	Offset
	7	6	5	4	3	2	1	0	Octets	Oliset
	header (13.3)								34	0
	responseOriginTimestamp							10	34	
	requestingPortIdentity								10	44

PTP - Announce Message (0xb)

```
> Frame 4: 109 bytes on wire (872 bits), 109 bytes captured (872 bits) on interface 0
> Ethernet II, Src: Meinberg 00:8f:ce (ec:46:70:00:8f:ce), Dst: IPv4mcast 01:81 (01:00:5e:00:01:81)
> Internet Protocol Version 4, Src: 172.27.75.10, Dst: 224.0.1.129
User Datagram Protocol, Src Port: 320, Dst Port: 320
Precision Time Protocol (IEEE1588)
  V 0000 .... = transportSpecific: 0x0
        ...0 .... = V1 Compatibility: False
     .... 1011 = messageId: Announce Message (0xb)
     .... 0010 = versionPTP: 2
    messageLength: 64
     subdomainNumber: 0

▼ flags: 0x003c

       0... - PTP SECURITY: False
       .0.. .... = PTP profile Specific 2: False
       ..0. .... = PTP profile Specific 1: False
       .... .0.. .... = PTP_UNICAST: False
       .... .. 0. .... = PTP TWO STEP: False
       .... ...0 .... = PTP ALTERNATE MASTER: False
       .... - FREQUENCY TRACEABLE: True
       .... - TIME_TRACEABLE: True
       .... 1... = PTP TIMESCALE: True
       .... .... .1.. = PTP UTC REASONABLE: True
       .... .... ..0. = PTP LI 59: False
       .... 0 = PTP LI 61: False

✓ correction: 0.000000 nanoseconds

       correction: Ns: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
     ClockIdentity: 0xec4670fffe008fce
     SourcePortID: 1
     sequenceId: 38302
     control: Other Message (5)
     logMessagePeriod: 0
     originTimestamp (seconds): 0
     originTimestamp (nanoseconds): 0
     originCurrentUTCOffset: 37
     priority1: 128
     grandmasterClockClass: 6
     grandmasterClockAccuracy: The time is accurate to within 100 ns (0x21)
     grandmasterClockVariance: 13563
     priority2: 128
     grandmasterClockIdentity: 0xec4670fffe008fce
     localStepsRemoved: 0
     TimeSource: GPS (0x20)
```

	Announce Message Format									
	Bits								0	011
	7	6	5	4	3	2	1	0	Octets	Offset
-	header (13.3)								34	0
	originTimestamp							10	34	
	currentUtcOffset								2	44
	Reserved								1	46
	grandmasterPriority1									47
V	grandmasterClockQuality								4	48
	grandmasterPriority2								1	52
	grandmasterIdentity							8	53	
	stepsRemoved								2	61
				timeS	Source				1	63

General messages

PTP - Signalling Message (0xc)

```
> Frame 42: 96 bytes on wire (768 bits), 96 bytes captured (768 bits)
Ethernet II, Src: Accedian @a:14:a3 (@0:15:ad:@a:14:a3), Dst: Fujitsu 1c:44:25 (@0:e0:00:1c:44:25
Internet Protocol Version 4, Src: 192.168.1.74, Dst: 192.168.1.159
> User Datagram Protocol, Src Port: 320, Dst Port: 320

→ Precision Time Protocol (IEEE1588)

  V 0000 .... = transportSpecific: 0x0
       ...0 .... = V1 Compatibility: False
     .... 1100 = messageId: Signalling Message (0xc)
     .... 0010 = versionPTP: 2
     messageLength: 54
     subdomainNumber: 0

✓ flags: 0x0400
       0... - PTP SECURITY: False
       .0.. .... = PTP profile Specific 2: False
       ..0. .... = PTP profile Specific 1: False
       .... .1.. .... = PTP UNICAST: True
       .... ..0. .... = PTP_TWO STEP: False
       .... ... 0 .... = PTP ALTERNATE MASTER: False
       .... .... .. 0. .... = FREQUENCY TRACEABLE: False
       .... = TIME TRACEABLE: False
       .... .... 0... = PTP TIMESCALE: False
       .... .... .0.. = PTP UTC REASONABLE: False
       .... .... ... .. .. .. 9TP LI 59: False
       .... 0 = PTP LI 61: False

▼ correction: 0.000000 nanoseconds

       correction: Ns: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
     ClockIdentity: 0x0015adfffe0a14a0
     SourcePortID: 1
     sequenceId: 21
     control: Other Message (5)
     logMessagePeriod: 127
     targetPortIdentity: 0x00e000fffe1c4425
     targetPortId: 1

▼ tlvType: Request unicast transmission (4)
       lengthField: 6
       1011 .... = messageType: Announce Message (0xb)

▼ logInterMessagePeriod: 1
          period: every 2 seconds
          rate: 0.5 packets/sec
```

durationField: 300 seconds

5)	Signalling Message Format									
	Bits								Octets	Offset
	7	6	5	4	3	2	1	0	Octets	Oliset
	header (13.3)							34	0	
I	targetPortIdentity						10	34		
	One or more TLVs							N	44	

A Signaling message is used to transport a sequence of one or more TLV entities.

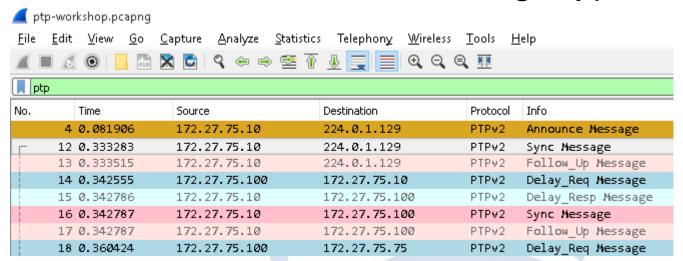
General messages

PTP - Management Message (0xd)

```
> Frame 4: 106 bytes on wire (848 bits), 106 bytes captured (848 bits)
> Ethernet II, Src: HewlettP e0:06:d3 (b4:b5:2f:e0:06:d3), Dst: IPv4mcast 01:81 (01:00:5e:00:01:81)
Internet Protocol Version 4, Src: 10.1.3.99, Dst: 224.0.1.129
 User Datagram Protocol, Src Port: 320, Dst Port: 320
Precision Time Protocol (IEEE1588)
  V 0000 .... = transportSpecific: 0x0
       ...0 .... = V1 Compatibility: False
    .... 1101 = messageId: Management Message (0xd)
    .... 0010 = versionPTP: 2
    messageLength: 64
    subdomainNumber: 0

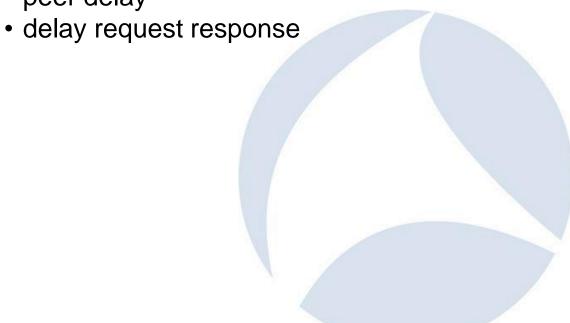
✓ flags: 0x0000
       0... = PTP SECURITY: False
       .0.. .... = PTP profile Specific 2: False
       ..0. .... = PTP profile Specific 1: False
       .... .0.. .... = PTP UNICAST: False
       .... .. 0. .... = PTP TWO STEP: False
       .... - PTP ALTERNATE MASTER: False
       .... - FREQUENCY TRACEABLE: False
       .... = TIME TRACEABLE: False
       .... .... 0... = PTP_TIMESCALE: False
       .... .... .0.. = PTP UTC REASONABLE: False
       .... .... ... .. .. .. 9. = PTP LI 59: False
       .... 0 = PTP LI 61: False
  correction: 0.000000 nanoseconds
       correction: Ns: 0 nanoseconds
       correctionSubNs: 0.000000 nanoseconds
    ClockIdentity: 0x544debfffe35620e
    SourcePortID: 1
    sequenceId: 236
    control: Management Message (4)
    logMessagePeriod: 0
    targetPortIdentity: 0xffffffffffffffff
    targetPortId: 65535
    startingBoundaryHops: 0
    boundaryHops: 0
    .... 0000 = action: GET (0)
    tlvType: Management (1)
    lengthField: 12
    managementId: TIME (8207)
```

current time (seconds): 0
current time (nanoseconds): 0


Mana	Management Message Format										
		0-4-4-	011								
7	6	5	4	3	2	1	0	Octets Offset			
	header (13.3)								0		
targetPortIdentity								10	34		
	startingBoundaryHops								44		
	boundaryHops								45		
Reserved actionField								1	46		
Reserved								1	47		
managementTLV							M	48			

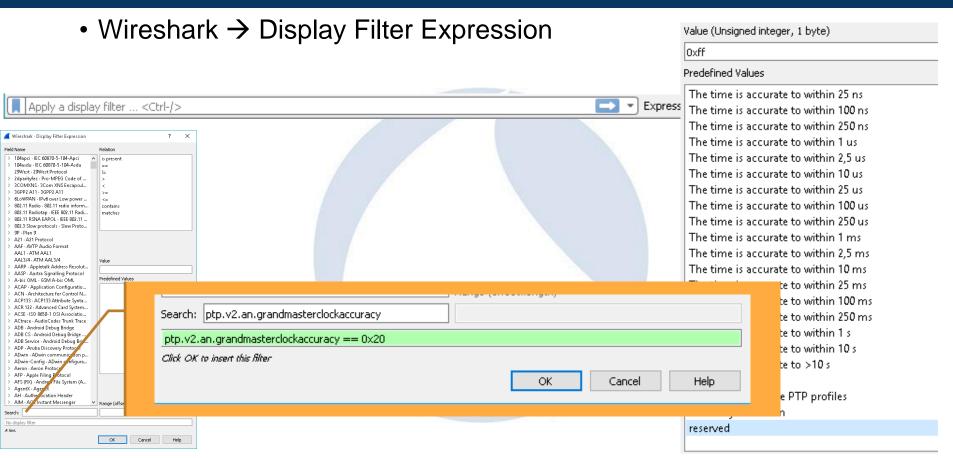
General messages

PTPv2 Coloring Rule


Colors for various PTP message types

- Wireshark Color Filters for PTP (Tutorial)
 - https://www.iol.unh.edu/sites/default/files/knowledgebase/1588/Wireshark_color_filters_tutorial.pdf

PTP Delay measurement


- Path delay mechanisms
 - peer delay

PTP and QoS

- For Carrier Ethernet Network (CEN), 1588v2
 requires a dedicated CoS or even a dedicated
 EVC with stringent requirements on Frame Loss
 Ratio, Frame Delay and Inter-frame Delay
 Variation
- For L3 IPv4/v6 the Traffic Classifier (DSCP)
 can be used for marking → Test with heavy Load
 also ☺

PTPv2 / ptp.v2.an.grandmasterclockaccuracy

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

PTPv2 / ptp.v2.sig.tlv.tlv Type

- Request unicast transmission
 - Switch from Multicast to Unicast
 - Advantage from PTPv2 (PTPv1 only Multicast)

```
tlvType: Request unicast transmission (4)
  lengthField: 6
  1011 .... = messageType: Announce Message (0xb)
  logInterMessagePeriod: 1
   period: every 2 seconds
   rate: 0.5 packets/sec
  durationField: 300 seconds
```

```
tlvType: Grant unicast transmission (5)
    lengthField: 8
    1011 .... = messageType: Announce Message (0xb)
    v logInterMessagePeriod: 1
        period: every 2 seconds
        rate: 0.5 packets/sec
    durationField: 300 seconds
    .... ...1 = renewalInvited: True
```

PTPv2 / ptp.v2.an.tlvType

no openptp/ptp general.h at m × +

145 };

(US) https://github.com/stefanct/openptp/blob/master/src/include/ptp_general.h

4⁴ €

///< The time is accurate to within 25 ns

///< The time is accurate to within 100 ns

///< The time is accurate to within 250 ns

///< The time is accurate to within 2.5 us ///< The time is accurate to within 10 us

///< The time is accurate to within 25 us ///< The time is accurate to within 100 us

///< The time is accurate to within 250 us

///< The time is accurate to within 2.5 ms

///< The time is accurate to within 10 ms

///< The time is accurate to within 25 ms

///< The time is accurate to within 100 ms

///< The time is accurate to within 250 ms

///< The time is accurate to within 1 s

///< The time is accurate to >10 s

///< The time is accurate to within 10 s

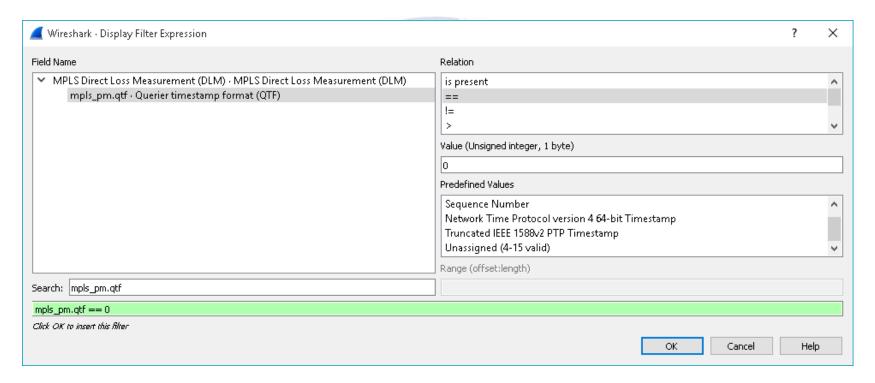
///< The time is accurate to within 1 ms

///< The time is accurate to within 1 us

Demos:

- Wireshark → Display Filter Expression
- Source on github for openptp
- IFFF MIB 802.1AS

PTP Profiles


- IEEE-C37.238 Power Profile
 - for power system applications
- IEEE 802.1AS-2011
 - for audio and video applications
- ITU-1 G.8265.1 Frequency Profile
 - for frequency synchronization
- ITU-T G.8275.1 Time and Phase Profile with full timing support (on new network)
- ITU-T G.8275.2 Time and Phase Profile with partial timing support (on existing network)

PTP Message Rates

- Different profiles have different message rates
 - G.8265.1
 - Announce message rate
 - Minimum rate: one packet every 16 seconds, Maximum rate: 8 packets per second,
 Default rate: one packet every 2 seconds
 - Sync message rate
 - Minimum rate: one packet every 16 seconds, Maximum rate: 128 packets per second
 - Delay_Req/Delay_Resp message rate
 - Minimum rate: one packet every 16 seconds, Maximum rate: 128 packets per second
 - G.8275.1
 - Announce message rate
 - 8 packets per seconds
 - Sync message rate
 - 16 packets per seconds
 - Delay_Req/Delay_Resp message rate
 - 16 packets per seconds

MPLS Loss and Delay Measurement – RFC 6374

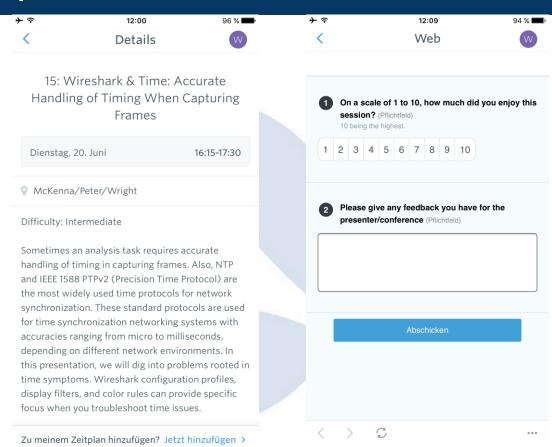
Time, Time, Time ... also in the MPLS World

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017

NTP & PTP Comparison

Criteria	NTP	PTP					
Peak time transfer error	> 1ms	> 100 ns					
Primary error source	Router	Router, Switches, Network Stack, Port contention					
Implementation	Hard- or Software Server/Clients	Hardware (mainly Master) Software (Clients, Slaves)					
Mode of operation	Clients pull time from server	Master push time to slave					
On path support	Non existent and not possible	Not required, but possible through transparent clock (enhances performance)					
Epoch	0:00:00 1 January 1900	0:00:00 1 January 1970					
Monitoring and Management	Exists (SNMP MIBs), Test Clients	Extensive inband metrics for monitoring and management					
SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017							

Session Summary


- Highly accurate timing synchronization solution in submicrosecond level can be done by IEEE 1588 PTP
- IEEE 1588 PTPv2 and NTP are widely used timing synchronization protocols in the packet networks
- Data center switches support PTP in hardware today
- Delivery accurate timing information to client under heavy network load must be tested
- PTPv2 solutions need to be carefully designed and reviewed before enabled in production network
- → WIRESHARK is the tool for displaying the different time information, but remember the capture engine ©

Future View

- Network Time Protocol Version 4 (NTPv4)
 Extension Fields
- Multipath PTP/NTP (RFC 8039)
- Authentication with PTPv2

Please provide Session Feedback

- Use the guidebook app on your smartphone
- Fill out the required fields

Slogan SharkFest 2017 from my party

Spanning Tree of Network Analyst

- 1. Listen
- 2. Learn
- 3. Practice

Thank you for your attention!

SharkFest'17 US • Carnegie Mellon University • June 19-22, 2017