QD SharkFest’'19 US

To send or not to send?..

How TCP Congestion Control
algorithms work

Viadimir Gerasimov
Packettrain.NET

#sf19us e UC Berkeley e June 8-13



About me

* In IT since 2005
» Working for Unitop (IT integration)

» Where to find me:
« Twitter: @Packet vlad
« Q&A: https://ask.wireshark.org
 Blog: packettrain.net
« Social group https://vk.com/packettrain (Russian)

#sf19us e UC Berkeley e June 8-13


https://ask.wireshark.org/
https://vk.com/packettrain

http://files.packettrain.net:8001/SF18/

Login = password = sf18eu

(caution: size!!)

#sf19us e UC Berkeley e June 8-13


http://files.packettrain.net:8001/SF18/

Oct 1986

The first (but not the last)
occurrence.

A

\Who (8

—

b\ame?

S

Protocol flaw?..

—

400 yards (365m) distance
Tremendous 32kbps line speed

Throughput suddenly dropped

to...
400 bps!

/_vy

Sender?

A
___——

#sf19us e UC Berkeley e June 8-13




Ta

{
What was on the wire? L i}‘/ "/
o AN
The sender (4.2 BSD) floods the link with B '
tons of unnecessary retransmissions. £ ) [’ ’
* because it sends on own full rate and have % Al \
inaccurate RTO timer : .-‘f o
ﬁ b
* some packets were retransmitted 5+ times! |
J
o 1- | |
0 4 B i 1

Send Tima (S}

#sf19us e UC Berkeley e June 8-13



D Congestion collapse

“Knee” (congestion onset) a.k.a.
Kleinrock’s operating point

This is called “congestion collapse” — when
goodput decreases by huge factor — up to 1000x!

[Fact: it was predicted by Nagle in 1984 before it occurred in real

_ Max link speed
life]

/ We want this

- So a sender has to slow down its rate ... or we “Cliff"
just add more buffer to router?

- Bad news: it NEVER disappears without taking
countermeasures.

Receiving speed

We have this...

A 4

Sending speed

#sf19us e UC Berkeley e June 8-13



QD Large buffers?

s —
\ J

Y
“Buffer sitting” time component is a part of RTT!

“Let’s never drop a packet” approach.
But... buffers could be large, but not endless.

Good for absorbing bursts, but doesn’t help if long-term incoming rate > outgoing rate.

Actually make things worse (high latency, “bufferbloat”) — so we don’t want to have even
endless buffers if we could.

Buffer is good for absorbing short spikes of traffic or for short-lived connections, but becomes a problem
for long-lived ones.

#sf19us e UC Berkeley e June 8-13



How to handle it?

Main decision made in [J88]:

“Smart endpoint, Dumb internet”

A sender (endpoint) has to slow down its transmission speed for some time
giving up self-interest for the interest of the whole system.

Modified sender should be capable to handle congestion without any
assistance from network nodes (though sometimes we’d like to have it... see later).

Senders are recommended to use agreed reaction to congestion signal.

#sf19us e UC Berkeley e June 8-13



Fairness??

#sf19us e UC Berkeley e June 8-13



this is bottleneck |

- Py
|

— Pr—

v

=

Equilibrium state is good, but...
only if:
- you are the only one sender,

- you're already in it, Sender

- there are no other variables.
Looks unrealistic.

-

Receiver

= Ah_|

-

TCP 'Self-clocking’

#sf19us e UC Berkeley e June 8-13

“Hand-weight”
diagram




\ -
What about this topology? N e R RN R S
! e S e T -
":‘4.&\ . \ ,,“-‘-.‘ e “ Es
« Random data transfer occurrence R e o M -

« Random link parameters NN S
* Unknown path SRR :

»
-
» R, o
> . > s
*) * o \4 B3] :
; oy 3 P R
A - !’l o p P 9 ~
; o 4 A2y
i o5 #’ ® Pay . W ¥

TCP has to do it's job in such environment. , ' % P g g T e

w y Lz’
- .« T 7K
ok AL
" % b ~Cant b \
A ./
- - o -
.:._’.’,“"',
»> -
I
f 758 Te

#sf19us e UC Berkeley e June 8-13



Design by []88]

Sender .
Application Layer
data stream TACK stream
TCP !
cwnd size control
""""""""""""""" Congestion
Control
Feedback (loss) « .
_________________ > brain
ACK stream
/ data stream
—. .
Problem: NO sending rate control | \ 4

Lower Layers

*System-wide or per-socket settings are both possible;

.

#sf19us e UC Berkeley e June 8-13




() First solution by [188]

1. Window-based control — hello, ewnd! —

W=min(cwnd, awnd), * where W -
number of unacknowledged packets; we also assume there
are no constraints in awnd in this session.

2. Feedback: packet loss as network congestion

indicator Fast (a.k.a. “slow”) |__sstresh | Congestion
start - timeout avoidance

3. Action profile: several stages for different

purpose each |
4. RTO estimation enhancement

When there are NO When there ARE
_ _ congestion indicators congestion indicators

5. Fast retransmit mechanism

6. Focus on protection from collapse, not
efficiency etc.

#sf19us e UC Berkeley e June 8-13




Chent.pomng

Three tasks:

1. Establishing feedback circuit (main one!)

2. “Fast and dirty” probe for bandwidth.

3. Determining initial sstresh value for further use (important!)

“It is always exponential shape!!”
Qgeration; Oh rly?? What about...(trace)
1. Start from initial window IW.
2. For every ACKed SMSS increase cwnd by one SMSS.

*Refer to slides from Christian Reusch for details.

|
|
|
|
'

ot
!
|
|
r
!
'
|
!
L
|
!
!
|
L
i
L

Initial window size nowadays usually equals 10 packets.

Refer to this link: https://iw.netray.io/stats.html

You can change it in Linux OS: #ip route change default via ip.address dev ethO initcwnd 15

And in Windows OS: https://andydavies.me/blog/2011/11/21/increasing-the-tcp-initial-congestion-window-on-
windows-2008-server-r2/

#sf19us e UC Berkeley e June 8-13


https://iw.netray.io/stats.html
https://andydavies.me/blog/2011/11/21/increasing-the-tcp-initial-congestion-window-on-windows-2008-server-r2/

Do you think it’s the best option?

r [=1=t Tlow Ind flow —3rd flaw _ — ath, flow] - 1st. flow Znd. flow  —3rd. fiow ath, flow
i 120
Questions/problems: : b
g 1w
1. Too slow. E . 2
2. TOO faSt ,'_‘I'l . o 5 10 15 L 438 440 44 450 E ! o 50 100 150 200 450 SO0 2550 2 600
3. Behavior on extra-low queue g 2
. o * 100
scenarios. . 3. E B
4. Spikes in queuing delay. PN A F o i o
5. “Bad luck” drop. 1 R \ot? . \ 20 {[PRIOIITY
* 23% 1240 1245 1250 1353 o o

TH3O S50 1000 1050 1250 1300 1350 1400
RTTs since experiment start
Pe RTTs since experiment start

Alternative approach is being developed (“Paced chirping” by Joakim Misund, Bob Briscoe and others)

#sf19us e UC Berkeley e June 8-13



Fun Facts

Tahoe was created using “bottom-up” approach: packet- Flow level
level rules first, macroscopic shape (flow-level) second.
All subsequent CA algorithms (almost) were developed
using the opposite “top-down” approach: flow-level first
(this is what | want to achieve), packet-level rules
second (this is how | achieve that).
Packet level
e e S iyt

#sf19us e UC Berkeley e June 8-13



Fun fact

As cwnd increases/decreases at least by SMSS value, its real graph never contains
inclined line segments, but only horizontal or vertical segments! So:

Moy Decrmase atgarimm

Congestion

Window size Packet Loss
Slow Start | Congestion Avoidance
Time
This is technically inaccurate! But totally OK to see In factit is “staircase-shaped”

the whole picture

#sf19us e UC Berkeley e June 8-13




(.\ Tahoe — Congestion avoidance

Core ideas:
1

. Uses packet loss as a sign of congestion (feedback
type/input).
2. Uses AIMD approach as action profile
(control/output).

Has two modes (as any other algorithm): =

1. With no observed signs of congestion.
2. With signs of congestion detected.

cwnd control rules:

cwnd + a if congestion is not detected 0 5 10
cwnd *b if congestion is detected

cwnd = {

1
For Tahoe, Reno a = . b=0.5 - . .
cwnd *Refer to Christian’s session for more details

#sf19us e UC Berkeley e June 8-13



Fun Facts

True or False?
« AIMD is an obsolete congestion control algorithm, nowadays we have better ones.

True or False?
« All congestion control algorithms since Tahoe react to packet loss.

True or False?

« cwnd in Reno in Congestion Avoidance phase grows as straight line until packet loss is
detected.

#sf19us e UC Berkeley e June 8-13



Fun Facts

True or False?

« AIMD is an obsolete congestion control algorithm, nowadays we have better ones — Partially true!

« True: AIMD itself is not a congestion control algorithm, this is just an approach, pattern to behave
while in congestion control stage. Many modern algorithms also use AIMD approach, but it’s
being eventually switched from. Remember also: AIMD # Reno

True or False?

» All congestion control algorithms react to packet loss — FALSE!

« True: There many kinds of congestion control algorithms. Many of them indeed react to packet
loss, but many others use different feedback type — delay. So, transition to congestion avoidance
state could be done with no observed packet loss at all!

True or False?

« cwnd in Reno (CA stage) grows as straight line until packet loss is detected — FALSE!

« True: In addition to “staircase-shape” although this line looks straight, it is not! The more cwnd
size is, the less slope of this line is (refer to “Convergence” slide to see it!). Chances are we’ll
reach packet loss too early to spot this.

#sf19us e UC Berkeley e June 8-13




Let’s rate it!

Well, how to decide which algorithm is better?

1. Efficiency (how full and steady is bottleneck utilization?)
2. Fairness (how do we share bottleneck capacity?)

3. Convergence capability (how fast do we approach

equilibrium state? How much do we oscillate later?)

4. “Collateral damage” (buffer overflow event rate, self-

inflicted latency)

#sf19us e UC Berkeley e June 8-13



Available BW

! .
\JL - Available BW
wasted B
b N -
/Nas?i/

Tahoe: bad Reno: better, but not ideal

#sf19us e UC Berkeley e June 8-13




() Fairness, convergence

Caution! Backup slide!

Introducing: Phase graph

Shows efficiency, fairness and convergence. User 2's

Here: an example for two senders.

-

Allocation
Xz

n/ Oscillation on Efficiency line

X4

Oscillation on Fairness line

Fairness Line

Optimal operating point

Over-utilizing zone

Efficiency Line

Under-utilizing zone

User 1’s Allocation x,

#sf19us e UC Berkeley e June 8-13




(D Fairness (5 streams Reno)

Wireshark 10 Graphs: Realtek PCIe GBE Family Controller: ethi (tep)

But what about non-TCP protocols? See later..

#sf19us e UC Berkeley e June 8-13




RENO, RTT 100ms, 5/ 2.5 Mbit/s variable BW

Throughput for 10.010.10.10:51220 — 1010, 10.1 2152491 (MA)

Sodun POl W Pamty Comyamer: 9 (6

| Available BW variation
| ‘ Over-utilizing zone

N
¥
T A

N
A

W
i "
A
A"

/ Convergence speed

Oscillation

Under-utilizing zone

#sf19us e UC Berkeley e June 8-13




Throughput lor 10, V101050730 — 1010, 1012245275 (MA])

T Wi e e D

Convergence time
4...5 seconds

RENO, RTT 100ms, . | X
20 Mbit/s constant BW i i e oo #.W-«r-‘*-w*—-“—v-—*—-nmvw e et i
#«"M"‘“m

Packet loss event

1 n 1] x M m

#sf19us e UC Berkeley e June 8-13



() Convergence (1 stream)

RENO, RTT 100ms,
20 Mbit/s constant BW

cwnd, sstresh
% a

i
Time, s

#sf19us e UC Berkeley e June 8-13




“lLate news!”

*  The sender will know about
“data leaving network rate” not
instantly, but only after 72 RTT.

*  With packet drop at the
beginning of a path —it’s

getting worse. Sender

7
« Al this time the sender was !
sending more and more 1
packets! Probably already ‘\
starting to slide down the cliff. \
* Itis getting worse when RTT s
increases. S

#sf19us e UC Berkeley e June 8-13

“"-————’

Lost

Receiver

\
1
i :
I | | H
i 1

— .-"Lh—r II

ll
A, A, /
//,
bd

Dup ACKs flight time = %2 RTT



() Complex challenges - 2

Non-TCP-compatible flows, unresponsive flows (“fairness” and “ TCP friendliness”).

v" Non-TCP-compatible is a flow which reacts to congestion indicators differently, not like TCP.
v" Unresponsive is a flow which does not react to congestion indicators at all.

“Fairness” “TCP friendliness”
This is how TCP flows with the same CA This is how non-TCP flows or TCP flows with
algorithm share bottleneck BW with each other. different CA algorithms share bottleneck
A part of it is “RTT fairness”. bandwidth.

2 possible solutions of this problem:

v' TCP friendly rate control [RFC5348] concept — intentional rate limiting. * a part of many modern CA
algorithms.

v Call for help (“network assisted congestion control”).

#sf19us e UC Berkeley e June 8-13



() TCP friendly rate control

Core idea: create an equation for T (sending rate, packets/RTT) with argument p (packet loss coefficient).

T=f(p)
For standard TCP (Reno) the equation is:

T:E

VD

v' Comparing actual T to “Reno —T” we can analyze relative fairness i.e. how aggressive protocol is vs.
standard TCP.

v' Equations might be much more complex and take into account RTT, packet size.

#sf19us e UC Berkeley e June 8-13



Sometimes this isn’t enough so to ask network for help is a good idea!

v" Routers know their own state (buffer load, link speed).
v" Router can separate different kinds of flows.

Queue management

Passive (no) management
v
Tail drop

Signal

ECN

#sf19us e UC Berkeley e June 8-13



Timeline

Indigo
LP  xcp Cubic LEDBAT ~ CDG Nimbus
Veno
) Fast YeAH Sprout Vivace BBRx
H-TCP
DCTCP BBR2
HSTCP . NV !
Vegas lllinois (testing)
Scalable Westwood ABC
Reno Remy BBR
Hybla Compound FIT
Tahoe [J88] NewReno BIC P PRR
| ] | | | .
| 1 | | | -
1988 1999 2000 2010 2018

#sf19us e UC Berkeley e June 8-13



Reno (1998)

Core idea:
Tahoe + “Fast Recovery”.

What do we address: non-optimal behavior during loss recovery.

Operation:
 Send Fast retransmission and then:

« Set sstresh to cwnd/2, set cwnd to sstresh+3.
* Increase cwnd on 1 SMSS for every received next Dup ACK (“inflate phase”).
+ Decrease cwnd to sstresh after receiving higher ACK (“deflate phase”).

Reason: we treat Dup ACKs stream as good sign (because packets somewhere are leaving our
network!) But we are stuck with “unacknowledged” window edge because of packet loss and can’t use
capacity becoming available. So let’s manipulate cwnd temporarily for this period and bring things back
when it ends.

#sf19us e UC Berkeley e June 8-13



This is the same Reno + improved packet loss handling (only for multiple segments loss).

What do we address: loss burst.

Reason:

If multiple segments were lost, this can mess up our “inflate-deflate” strategy. We'll deflate ewnd even if
we receive partial ACK (higher than the one in Dup ACK stream, but lower than packet we sent last before
loss). Therefore we’ll deflate cwnd too early!

Solution:

« Remember highest SEQ at the moment of packet loss detection (“Recovery point”).
« Do NOT deflate ewnd unless we receive an ACK for Recovery Point.

#sf19us e UC Berkeley e June 8-13



Senders (physical) Win 10 host 2
in 0s

6 Control
Ubuntu
18.04
Data 8.0

virtual
Data 4m

Mirror
.' Software:
—

g— Control

#sf19us e UC Berkeley e June 8-13




Fumi List Progemy

L A . | loss | B Latency  BWRQueus BG Traffc Feorder Discoomection B Thew
| WirtuslCearmal 1 oo %] Al Metwork
1 HolLstency ) v
) Fioed
Local Applicetion
- Labency 0 mE
() LUiniform Cestribirted
Put
el = Lo i
™) hormal Dstriuted
Average s Devialion s
Lireer
—i s it el iy = ew m
o Locai Fort . Remote Port
L { Bt Arokmoni M Adegriers D0-50-E Bo-te5 =
#eliny Perod ser Mz Period sac El Ceete Macfy Cmse
stk —_— =
——— Brobablity R Ly 1 i Enrd Arlepier Acd Proioesl local... locafort | Rem Bemate Port
ia | = [ E] ki
A Cares i S - Ahib138 .4 & |
F
-
. 2
o |
- B e
| —

https://blog.mrpol.nl/2010/01/14/network-emulator-toolkit/

#sf19us e UC Berkeley e June 8-13



D Software 2 - flowgrind

Allows separation between control and data
traffic.

Large number of monitored values
(including current cwnd and sstresh size,
yeah!)

Various traffic generation patterns.
Individual TCP flow parameters setting.

An ability to start flow from any PC running
flowgrind daemon.

Possibility to redirect output table to text file
for parsing.

Sensitive to incorrect arguments (often gets
stuck and reboot is needed).

Problems with NAT’ed endpoints.

No Windows version = no Compound TCP.

http://manpages.ubuntu.com/manpages/bionic/man1/flowgrind.1.html

#sf19us e UC Berkeley e June 8-13



(.\ NewReno on 40Mbps_100ms link

— cwnd
—— sstresh
— RTT

/

Time,s

0 T T
0 50 150
#sf19us e UC Berkeley e June 8-13




NewReno

Wireshark 10 Graphs: ethD (tcp)

—

«T‘W+M.W""\“ff*‘WM"M#
‘ N ‘W\

A

A
'
w0 |- L»’
]

i

gu—— ==
|

uhu\’ j\,krwr *l' ”‘”ﬁ,&'h»’\”\ “f# 1I| Illn “,J' "t”“hlll\ mmw‘.‘W} W“‘u NH H ,’Jf';\“ﬂ" ],'H',“iyl
i

T I

b
il I )
f X L (¥

Tow (1)

Collateral damage: Almost 3 Buffer overflows / 797k Total Packets

#sf19us e UC Berkeley e June 8-13



NewReno

Wireshark 10 Graphs: reno.pcapng

100 ww Iretmevds
TCP e
. WFQ
i
e
o w)
e
[ wo
| | o
o )
\
w0
|
' l
Lem ! LI {
{ | ‘
|
| |
u "
e l |
" | | | o i ‘
p ' ‘ \ ¢ |
E | | '
' | ! ' ‘
| My Ul
. we : i e \
400000 > * N N ! ll \
.
e 3 4
v e o=/
g —
) I :
= X “ « "
Tees 1)

vs. Reno Friendliness

#sf19us e UC Berkeley e June 8-13



NewReno

Wireshark 10 Graphs: reno.pcapng

|

[ 1 ‘ 1 ’ | |
| ‘ | L ) i | o b spas w—um- "
I R o o -‘ Ty | wfw» otiodes *1' o M ,MY«

5-stream convergence

#sf19us e UC Berkeley e June 8-13



NewReno

Wireshark 10 Graphs: eth (tcp)

1% loss link behavior

#sf19us e UC Berkeley e June 8-13



Further progress

Several problems were observed with Reno:

v NewReno was doing its job fine those days, but later with the raise of LFN and wireless it became clear
that...

x |t can’t work efficiently on high-BDP links (because cwnd fixed additive increase algorithm is too slow

and 2 cwnd drop is too much). To utilize fully 1Gbps link with 100ms RTT it needs packet loss rate of 2x10- or
less. With 1% loss in this link it can’t go faster than 3Mbps. After packet loss event it needs 4000 RTT cycles to recover.

x |t treats any packet loss as congestion indicator (not good for wireless networks).
x  Often visits “cliff” area doing damage (this is common among all loss-based algorithms).

x Has 1-Bit congestion indicator — inevitable high oscillation level (this is common among all loss-based
algorithms).

#sf19us e UC Berkeley e June 8-13



Further progress

How to make CC algorithm perform better? What to play with?
Remember feedback type and control? Let’s play with them!

Feedback type:

+ Packet loss

* Delay

* Both of them

* ACKs inter-arrival timing
* ACKing rate

+ Explicit signals (ECN)

#sf19us e UC Berkeley e June 8-13



Fast TCP
(New)Reno Tahoe Vegas

Loss Hybla
Scalable HSTCP Compound
H-TCP Packet Veno
Loss +
Westwood Delay
CLTCP XCP lllinois
- Yeah TCP
Explicit ea
signals DCTCP
DCQCN

D3TCP

#sf19us e UC Berkeley e June 8-13



( N\ CA - control (action) tweaking

&»

What about control?

Step 1. Playing with AIMD factors (“knobs turning”)

Step 2. Adding more variables

/ We can play with a factor

Not constant a, but a=f(something)

cwnd + a if congestion is not detected Same with b

cwnd *b if congestion is detected

\ We can play with b factor

cwnd = {

Therefore changing angle and “drop height". Step 3. Shifting from AIMD to entirely different

model
(The most recent approach).

Bandwidth

Time

#sf19us e UC Berkeley e June 8-13




() Scalable TCP - first “high BDP” try

1. Aimed to deal with high BDP (first and simplest attempt to do it).
2. Uses packet loss as feedback (loss-based).
3. Uses MIMD approach as action profile (!).

. _CAFTALY OBVIOTY

cwnd control rules:

“Scalable” means

cwnd + 0.01 x cwnd if congestion is not detected "better scalability”

cwnd * 0,875 if congestion is detected

cwnd = {

v" Much more efficient than Reno in high BDP networks.
v" Recovery time after packet loss (200ms RTT, 10Gbps link) — 2,7 sec.
x RTT fairness, TCP friendliness — terrible. Kills Reno easily.

#sf19us e UC Berkeley e June 8-13


https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_scalable.c

Scalable TCP

cwnd
—— sstresh
— RTT

VWA ANNNN N

600

400

200

0 T T T T
0 50 100 150
Time,s

#sf19us e UC Berkeley e June 8-13




(.\ Scalable TCP

Wireshark 10 Graphs: othD (tcp)

Nh Mur |LJ'N HM 4\ « M‘Wb'& %‘mw' WH i MJ&M &'Jtﬂ‘#‘ )

:‘fLy“f pimnigh

}
|| . A & & 3 K i l | S [N S ) S (N DA S T

Tewe ¥

(———
g & —

Collateral damage: 23 Buffer overflows / 812k Total Packets

#sf19us e UC Berkeley e June 8-13




Scalable vs NewReno

Wireshark 10 Graphs: ethD (tcp)

\ \
[
Scalable

! BIF Scalable BIF NewReno

000 - \
B " - ¢ 2 s . ' ¢ -
. | .
1L » * ' . .

I's unfair to say the least. 20Mbps, 100ms link.

#sf19us e UC Berkeley e June 8-13



Scalable

Wireshark 10 Graphs: scalable.pcapng

‘. ' I | ' J \ | ' | 1| J |
R G A R el JL i L T e T L L
i M\.w.,’n,’ il , ‘ |
.
| ‘.'h'l{‘ ’”“f"‘ l‘- Vo J . l‘ "’-‘ al N |
ol \"»1‘«,‘»'\.(‘,'“.“ Tk be'es 1
"“’\,. e - e [Pty
W, T— : 2 il (o Ta YOO S v o 4( o b
| T e o A ARy _
umllA | i 1‘1111“- 11}-1[’1?1."1:!{.7:.‘11 U0 0 O W [ U0 I 7 W SR ) SO G N 0 R Y G I O | =1 j

Tiee

5-stream convergence

#sf19us e UC Berkeley e June 8-13



000

Scalable

Wireshark 10 Graphs: ethD (tcp)
SO0

|:' "’
A | f
wonrl| | ‘ | |
l| f« .l | | d b ‘ - J"" '\ 1 \'l VI’\‘ ' . 't\fll
8 ' v ) ' | i MM ‘ |
BRI LIL P W W(‘ Ay AL A WO A
™ AP T ARE ER ENEY
’ vl )“ & ’II ‘. l |} .‘ I ‘ ||
\/ 1
i ‘
(TR = : .t . o
A e 20 S By ¥

;.;hx ik ]LJ‘M

. oo LS
A 5 % 5 S
. lm.&lu,knul Ll nnll..ul LT i)
1% loss link behavior
#sf19us e UC Berkeley e June 8-13

A0 ALCRIEAE 16 1

/| \l on’ Wy
u‘\‘ M“ |
‘ { I ‘\5 ol

hanthe o
i1 ‘!..llllhilu._

b

PRIy St ixe . e § ’\ .“‘f-')n- “ag "‘\ -
A.!Ezliilixlnk h]“hul‘ Lh‘xhl!nhllt i ll d1k h i .“ A “‘




) Highspeed TCP [RFC 3649]

Core ideas: “Medicated psycho”

Aimed to deal with high BDP.

Uses packet loss as feedback (loss-based). it D LB
Uses AIMD approach as action profile. .

“Let’s live with Reno on low-BDP, but take what it can’t take on high-BDP” 10000 -

wn =

cwnd control rules: 1000 |

cwnd + a(cwnd)/cwnd if congestion is not detected
cwnd — b(cwnd) * cwnd  if congestion is detected

{15034, 1)

Banding Aol S (i pkia'RTT

cwnd = {

Asgutar TGP (5 = 1.22p%0.5)
HighSoeead TOP {5 = 0150082

Formula: alw) = 2P W * bl{w)/(2 - blw)) L
1e-10 *s-09 1a-08 1807 Te-l6 1005 0.000¢ 0000 OO 01

| ez Pasa P

Main point is: a, b values depend on current cwnd size. If cwnd is less than
38*SMSS -> act as Reno (more bits in input!)

+ Behaves less aggressive if a path is not LFN (for TCP friendliness).
x RTT fairness - still bad.

#sf19us e UC Berkeley e June 8-13


https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_highspeed.c

Highspeed TCP

cwnd
—— sstresh
— RTT

600

400

200

0

T T T
0 50 100 150
Time,s

#sf19us e UC Berkeley e June 8-13



nghspeed TCP

ireshark 10 Graphs: ethD (tcp)

i

mhql MH}“M' W le‘nh' I *M W’" i W TW 50 lln\[lllw ( »le %‘, hg{}.‘lbl w‘
| t i

/ / 1

Ll = -

Collateral damage 7 Buffer overflows / 790k Total Packets

#sf19us e UC Berkeley e June 8-13



.\ Highspeed TCP

Wireshark 10 Graphs: highspeed.pcapng

100 ww Irtmeves
TP e
] WFo
| st
e
)
I [ 2 w4
‘ | ik 1 Ll A\ ‘ | N ‘ ) wo
\ AL v | ! [y N o
0* | ! " w ' ol -
‘ T
|
|
| | JI [ |
0ne il ! |
sulil Y
| |
1.2
: 1 , ; e ki \ ‘
E , . - . iy
. . \ A | <
00 q b e /
- -
1 4 (3 [ 4
R — 4
o | | — '3 4 el : 4
— o T ———— §
| e e —
1l [ . — = ! ; : :
0 15 ) 18 @ s ™
Tes 1)

vs. Reno Friendliness

#sf19us e UC Berkeley e June 8-13



Wireshark 10 Graphs: hispeed.pcapng

L‘L\W"'rlML-'mw‘Mm*lf'L%‘dﬁ‘»'wMU‘%W N&‘MM

; 41%»1%&\%‘ MM\#«M‘WW«‘WW{ w'ﬁl "M ‘Hh’ W*Hﬁwﬁlh -
ﬁwmwj ) ’ LINER & " | l f

W L ainan, Al 1'_ U . LU Wb Mo il g -
— T "-"]d i EJ?H“& fie ;,L -y 17--‘?,;?;"':;;:'-
] Ry = r?ﬂ hfﬁ - " 1 [‘f)".'.ir ‘“:t’bdl:_:?: -._“ ki’ - ‘l ¥i [ | \
i | ;| e ‘

|
= | e ) i U S N S S e e |

T

5-stream convergence

#sf19us e UC Berkeley e June 8-13




Highspeed TCP

Wireshark 10 Graphs: ethD (tcp)

240000

| l‘ . ﬂ J |’ | J } )i WY | || | .
I 1 ‘ ; ‘i i | O A AT ALY
| ! Al ’I ”,' 1 | | "‘ "IHHI | |
ﬂ‘ '} 'f f " (R l"‘lﬂ'll ,-'N‘I 1 [ Ui I’ p W f“
EEEEE 11 1 '\ ’l
oy WWWM/{ (waw-ﬂwiwywwp/v

1% loss I|nk behawor

#sf19us e UC Berkeley e June 8-13



CUBIC TCP

Core ideas: “Ready_s.teady_Go!”
1. Aimed to deal with high BDP. ' - Wi
2. Uses packet loss as feedback. . | AR
3. Uses cubic function as action profile (concave/convex parts). ey S
4. Default for all Linux kernels > 2.6.18, implemented in Windows since Win10. 12 = W Convex region
cwnd control rules: \
In case of packet loss: fu‘w = -
1.  SetW,,, to cwnd, Wind o l\
2. Setcwnd, sstreshto (1 - 8)*cwnd where default §=0.8 S 3
3.  Grow cwnd using cubic function: Concave region Max Proting
E [ Benawion ——iin|
_ . Illj{-i-'r ) (R0 = W)
W(t)=C(t-K2P+W,,, where: K= {II¢
C 4
Main point: approach last packet loss point slowly and carefully, but if there is no :
more packet loss here — begin ramp up to use possibly freed up resources. 2? 1 2 3 4 5

Additional techniques used: TCP friendly region, Fast convergence, Hybrid slow
start.

. . . Last remembered value where packet
v" Coexistence with Reno on non-LFN links — moderate loss happened P

v RTT fairness - good

#sf19us e UC Berkeley e June 8-13


https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_cubic.c

600

400

200

CUBIC TCP

A

UL

T
50

T
100
Time,s

#sf19us e UC Berkeley e June 8-13

T
150




CUBIC TCP

Wireshark 10 Graphs: ethD (tcp)

[

| -1‘.%%%-: |

S

1l | M\ i : un J |yl W i ﬁl W " W ’, Lq‘\ 4 X - o ""l‘ﬂk“"'h"\','t"' "‘M" ‘.-,ﬂ'.'w‘ L
' ’ WN WM" ‘ it ,*‘ ]hf*“ }l W% m AMYl m\,‘w}ﬁ h."‘”"”" ;Lf. &i iy / i

{FM/»P,./,_//,_/,_/,_/,_,/ > A/f«-,mw,__,,

Collateral damage: 14 Buffer overflows / 790k Total Packets

#sf19us e UC Berkeley e June 8-13



CUBIC TCP

Wireshark 10 Graphs: cublc.pcapng

ne
T pr—
YO ervern
] w0
wl
| -
| )
\ | ‘“ i . e
‘ he bl —
[l | M | VN
| | | A | | I | I A : ‘ ’
ull | \ o
‘ M . el o l | H [
1 )
{ dMI ! (|l |' |
T
O " |
‘\
L0 ‘
s b | I
’ ' 4 4 ' o > ’ : H
E b . P! . L |-
. . . ' ' L L "
‘ o F /-‘--—_'/' , v
e .d\ ‘/_—___-/ - /' T ————— / ‘/"
5 e N . 3 ' 4 5 2. ;
’ig : i i i i x =
1l = 1‘5 [ w
Tes 1)

vs. Reno Friendliness

#sf19us e UC Berkeley e June 8-13



CUBIC TCP

Wireshark 10 Graphs: cublc.pcapng

: Lllllly, L ‘,,'l Mw y v; o L‘L i |*!|“l ‘,‘. ‘.“‘Ll,. TPV (W ,L " " | L | ‘L e .’._l,h,., )*M, |
M-t e bt
| | _ Y*,,,
il e b
| l l | | o=t ) - 4 i 1 |

5-stream convergence

#sf19us e UC Berkeley e June 8-13




CUBIC TCP

Wireshark 10 Graphs: ethD (tcp)

Ll |

1% loss link behavior

#sf19us e UC Berkeley e June 8-13



CUBIC Fun Fact

If you look at CUBIC source code you’ll spot some parameters can be tweaked!

nodule_param{fast_convergence, int,  9544)
MODULE_PARM_DESC! fast_convergence t
nodule_paramibeta, int, B&44)
MODULE_PARM_DESC! beta. it
nodule_param initial_ssthresh, int  0644);
MODULE_PARM_DESC: initial_ssthresh.
module_param{bic_scale, int, G444},
MODULE_PARM_DESC blc_scale
nodule_param(tcp_friendliness int 96443,
HODULE_PARM_DESC! tecp_friendliness
nodule_param(hvstart, int, @544
RODULE_PARM_DESC(hustart,
mnodule_paramihystart detect, int, 8044}
MODULE_PARN_DESC! hystart_detect,

parameters

&)

HaOrme

bic_scale Fask
Deskiop CONVET QENT
w

(e |

MENE
Ceownlo ads

P hystart_ hystart_ hystart_ initial_
! ack delca debect low ssthresh
wi el

i
dd
]
o

nodule_param{hvstart_low_window, int, 8644
MODULE_PARM_DESC( hystart_low_window,
module_paramihystart_ack_delta, int, G644
MODULE_PARM_DESC hvstart_ack_delta

Trash

&=

tcp_
Friendliness
Other Locations

+

These knobs can be found (for Ubuntu) at /sys/module/tcp_cubic/parameters

#sf19us e UC Berkeley e June 8-13



Hybrid slow start

Problem: high aggressiveness during final slow
start phase. — |

Solution: estimate a point where to exit Slow
Start mode.

10
Time,s

Methods:
« ACK train length measuring method.
* Inter-frame delay method.

Built-in in CUBIC algorithm.
Method can be switched.

Time,s

#sf19us e UC Berkeley e June 8-13



VEGAS TCP

Core ideas: “Pacifist”

1. Firsttry to build delay-based algorithm (1994).

2. Uses delay as feedback (purely delay-based). 7 ‘
3. Uses AIAD as action profile.
4 BIRTT

cwnd control rules: o/RTT .~
1. Measure and constantly update min RTT (“BaseRTT")
2.  Forevery RTT compare Expected Throughput (cwnd / BaseRTT) with ,;(/

Actual Throughput (cwnd / RTT) -
3. Compute difference = (Expected - Actual)/BaseRTT
4. Look where in range it lies and act accordingly (1 per RTT ewnd update

frequency). 2
5.  Switch to Reno if there are not enough RTT samples. ;\/j’

£

v Very smooth §
v' Doesn't act on Cliff zone S
v Induces small buffer load, keeps RTT small TR 28T Decrease Zone

x Gets beaten by any loss-based algorithm
x Doesn'’t like small buffers
x Doesn'’t like small RTTs

#sf19us e UC Berkeley e June 8-13


https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_vegas.c

VEGAS TCP

cwnd
—— sstresh
— RTT

600

400 ~

200

0 T T T
0 50 100 150

Time,s

#sf19us e UC Berkeley e June 8-13




VEGAS TCP

Wireshark 10 Graphs: ethD (tcp)

x £0 w 20

\
\
b ; M?/'v“m' g W'rgm AT T L e iy iia P L W'y Al N g vy r T W i, Ly AR )HJ""'MWTQ"\w"q"m # MO it W,
ﬂ
Ll

When it’s alone — this is impressive! Collateral damage:"élmost unnoticeable / 767k Packets

#sf19us e UC Berkeley e June 8-13



( \ NewReno vs. VEGAS TCP

Wireshark 10 Graphs: ethD (tcp)

NewReno \ \ \

‘.' W BIF Vegas
VEGAS d BIF NewReno

0000

When VEGAS is not alone — this is a shame..

#sf19us e UC Berkeley e June 8-13



VEGAS TCP

Wireshark 10 Graphs: vegas.pcapng

| M:’."‘a‘.’

- oY gy T
L e TP iy
o bl Ut G b .

e Sl

v | 4!'\‘ Ao se - ﬁ?" + v p———
|

: I‘M ’ll,mhtwiﬁfijﬂ:]E*.:J(Mm,‘l‘.‘ﬁWk‘r#mmmrmmwwun m‘“é e Aﬂ-H«M f"ﬁ‘fﬁwumﬂ’f ] Pt + MJ‘T
s ‘ Ve . T

Tiee

5-stream convergence

#sf19us e UC Berkeley e June 8-13



VEGAS TCP

Wireshark 10 Graphs: ethD (tcp)

100w Iredeevls
— TCP vy
$O00,
e WFQ
il
o
. =
mooos b |

S0000%

20000

|
tzo008 | N f

¥/ ' \ J | 1 ‘ ,’ -‘
| 1' »yll‘ '\l |, ! \) “ L

.. M/JWWW/M/ 'WWW/" >

1% loss Iink behavior

#sf19us e UC Berkeley e June 8-13



ILLINOIS TCP

Core ideas: “Careful” Source
1.  Uses packet loss arid delay as feedback. A
2.  Uses modified AIMD with delay-dependent variables as action
profile.
a

max
cwnd control rules:
cwnd = { cwnd + a/cwnd if congestion is not detected

(1 -B) *cwnd if congestion is detected

Measure min RTT and max RTT for each ACK. Track them.

Compute a:

+ If average delay is at minimum (we are uncongested), then use large
alpha (10.0) to grow cwnd faster.

+ Ifaverage delay is at maximum (getting congested) then use small
alpha (0.3)

min

\4

Compute B: del
« Ifdelay is small (10% of max) then B = 1/8 €laYmin delayay

+ Ifdelay is up to 80% of max then 3 = 1/2
* In between is a linear function

#sf19us e UC Berkeley e June 8-13



https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_illinois.c

C, ILLINOIS TCP

800

600

400

200

— cwnd
—— sstresh
— RTT

T e

T T T
0 50 100 150

Time,s

#sf19us e UC Berkeley e June 8-13




ILLINOIS TCP

Wireshark 10 Graphs: ethD (tcp)

,\M

i'l\!hv'k’l”ffl'w’v’v"w,f‘\*"“ .'11 ]L.,ujf,n‘,)""‘,'s “ HW “'M M flﬁ' ft w’"{' wl‘ w IWN r'!\“'H ! M U““M“\' wll»' fﬁl%r\h.nﬂﬂm Ll

!

Collateral damage: 2 Buffer overflows / 815k Total Packets

#sf19us e UC Berkeley e June 8-13



Illinois TCP

Wireshark 10 Graphs: illinols.pcapng

| 100 Irvtmrvels
| ‘ TEP e
| -
1 il
|
\‘ )
| -
| |}
[ 1 |
\ | ‘ hy
TN\ I i
| u,l \ {\ | [x ! i[ ' bl
’ B | [l
? 5 "
| | i ’
| \ . ‘ﬁ \ | | |
» |
1 l ‘ | ‘
‘ \
|
L3mt l |
£: '
0000 J; - - N . |
n ) g — x o . ’__’__'
.  —
»‘i i ' r ©
Q = x +“ a S "
Tews 0

vs. Reno Friendliness

#sf19us e UC Berkeley e June 8-13



Illinois TCP

Wireshark 10 Graphs: illinols.pcapng

-

lw.vwwlwwﬂ"'ﬁf-mﬁﬂc%' “.vm*‘%wwwuM‘WHMM(](MM"W*%M

»,w‘n ",, I ‘w' TP .
’ “ﬂ mh N |1 y‘ |

1 'l . : : ‘ |

T

5-stream convergence

#sf19us e UC Berkeley e June 8-13



Illinois TCP

Wireshark 10 Graphs: ethD (tcp)

: il :. B .
. : 4! ﬁ, et oba, WAPER 8 38 L Sy - A \t&.ﬁab\-"‘xn e
Y e \ Sy ofin .t 4 ". o) L'%'?.". e -4 "f 3 ) ."..’..;k.‘.‘.,t" 57 S I e Pl l: 3
e B B B S S e
Pt i i 402 il ot )

&

1% loss link behavior

#sf19us e UC Berkeley e June 8-13



Core ideas:

1. Uses combination of packet loss and delay as feedback.
2. Uses AIMD additionally altered by delay window as action profile.
3.  Only for Windows OS since Vista.

cwnd control rules:

\ 4

win = min (cwnd + dwnd, awnd)

Where: ecwnd — as in Reno, dwnd — as in Vegas.
cwnd + 1/(cwnd + dwnd) if congestion is not detected

cwnd = { (1 -B) *cwnd if congestion is detected

\ 4

Main point: combine fairness of delay-based CA with aggressiveness of
loss-based CA.

v" Coexistence with Reno on non-LFN links — good
v RTT fairness - good

#sf19us e UC Berkeley e June 8-13

A\ 4




Compound TCP

Wireshark 10 Graphs: ethD (tcp)

f{nw*',‘inﬂ'r“....wm AP AR ARG i

4
| ,«.4] b LI g M ik i N i A gy b o ety

furtne ].*w. ,'T',‘.ﬁ[\w e Ay Al At A o A | —— .th.
{ ‘ '

|
«0008 AAARA RS L P P o /—‘—f—’-""
L d ) i

Link: 20mpbs, 200ms RTT. Tested using ntttcp.exe, Win10 — Win10. Sorry, no cwnd graph..

#sf19us e UC Berkeley e June 8-13



; WESTWOOD TCP

. . AY.VH Pt 1
Core ideas: Wireless warrior Source

Main idea: an attempt to distinguish between congestive and non-congestive losses.
Uses packet loss as feedback.

Uses modified AIMD as action profile.

Continuously estimates bandwidth (BWE, from incoming ACKs) and minimal RTT
(RTTnoLoad)

hron =

cwnd control rules:
+ Calculates “transit capacity” : BWExRTT,,, .. (represents how many packets can be in transit)
* Never drops cwnd below estimated transit capacity.

max(cwnd/2, BWE X RTTnoLoad) if cwnd > BWE X RTTnoLoad

cwnd (on loss) = { no change, if cwnd < BWE X RTTnolLoad

* Ifnoloss is observed — acts similarly to Reno.

#sf19us e UC Berkeley e June 8-13


https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_westwood.c

800

WESTWOOQOD TCP

600

400

200 A

2. Remember BWExRTT,

nolLoad

cwnd

—— sstresh
3. Packet loss RTT

/ 4. Drop ewnd to BWEXRTT ., 000

1. RTT begin to grow

MMW

50

#sf19us e UC Berkeley e June 8-13

100 150
Time,s




WESTWOOQOD TCP

Wireshark 10 Graphs: ethD (tcp)

THWWM i "«'»”"h Wbt "'|‘A h' Ny .\'\*{.'J«"' \v"‘i".,,$, M‘ ‘l ,.:Hr'ﬂ‘rn‘w it '*'a'%’{-\ """w Whpht »Hi‘t.,'uwl*

/ i |

J — e !
r P-_-—-——‘—i

o L8 i | |

Q x w 20 = uC

%0

Collateral damage — same as Reno. Good for lossy Iinkgj‘With 1% loss beats CUBIC by x5 factor.

#sf19us e UC Berkeley e June 8-13



WESTWOOQOD TCP

Wireshark 10 Graphs: westwood.pcapng

B ) M | | |
| | AU | e
[ ‘ |
| { » |
29m1 | | |
| |
| | ' )
| \
A [Ny VY ' v‘i » nr \
o\ 1 Y i | | \ L | )
180 N Y f MR v e e R [y |
I' ‘,.- ’r \ 3 |
i |
| \
A | | ’ | B J
| ( |
| \ ‘ ‘ .
#0000 1 ® e | .
M . ¢ | - -
) . - o » R
| — JUE— .
- v
- : A * | A -
L < "

vs. Reno Friendliness

#sf19us e UC Berkeley e June 8-13

iy



e
l““ l
Al ‘ “)‘4”’-“\'-»«.&,
I .

s fhr-
{.H +} l%“m‘“‘f,n M*v\H’ =

et

H

\ M - “. | ';"Tﬂwutwhrf *i ;

W”““ I

I8 W "

......

n. |

I

5-stream convergence

#sf19us e UC Berkeley e June 8-13



u W 'l'”‘, “> ~“ ) “” i “""”“\ il UN‘ ww il il m M' M

s .}Sw‘" m Qﬁ} "fﬁ;cm W 0 nm,‘.,\, : iszm;:— a ;

Al 4 Hhul 0 | hanJl a8 m.ul A Lo i A ukx

'0

1% Iosslnk beha vior

#sf19us e UC Berkeley e June 8-13



Comparison charts

|| — 1r:u| 1
| - eno I e
| I Feno ! ] . R
I eah | I v eah
< I linois B0} I llinais
Hybla Hybla
| [ Vegas I Vegas
- [0 Westwood - ] Westwood
5 | CTcuBie i _lcusic
= [ 5TCP = = 5TCP
b | I HTCP 5 I HTCP
; — 1 i —
3 | . HSTCP g B HSTCP
,,‘E | CTCP E | - TR
I competing fow = I competing fow
&4 18 26 : — — =
32 (256 B4 [ 258 128/ 256
Trip T
Round Trip Time{ms) Round Trip Time{ms)
Intra-protocol fairness RTT fairness

* From “EXPERIMENTAL STUDY OF CONGESTION CONTROL ALGORITHMS IN FAST LONG DISTANCE NETWORK”. Guodong Wang, Yongmao Ren and Jun Li.

#sf19us e UC Berkeley e June 8-13



100
50}
#a}
TO}
&0+
504

404

Throwughpu (Mbps)

ot

20}

* From “EXPERIMENTAL STUDY OF CONGESTION CONTROL ALGORITHMS IN FAST LONG DISTANCE NETWORK?”. Guodong Wang, Yongmao Ren and Jun Li.

#sf19us e UC Berkeley e June 8-13

128 256
Found Trip Teme (ms)

Inter-protocol fairness

. =00

1 I Renc

I v=ah

4 I Minsols

. Hyola
[ vegas

[ Westwood
 — -]
=0 sTCP
B HTCP
. e
I H=TCR

| - TR
I competing Rena |



The future?

*  Multiple signals (ACK inter-arrival time, timestamps, delay with minimal RTT value tracking, packet loss).

* Learning-based (the use of assumption model).

* No pure ACK clocking (switch to combination of ACK clocking + pacing model). cnwd + time gap from last sent packet.
* Moving into application layer (PCC, QUIC — on top of UDP).

*  Pushing CA into user-space + using API (concept, Linux).

* Reinventing SlowStart (Flow-start, “Paced Chirping”, now more for datacenter environment).

BBR ::q Heartbeat probes, BW estimator

Vivace ::d Online learning

ABC ::d Explicit signaling

Remy ::d Parameters “brute-forcing”

Indigo ::d Machine learning

Sprout ::# Stochastic forecasts, for mobile

SCReAM ::d For LTE+multimedia

Omniscient ',:b[ “Ideal” TCP

#sf19us e UC Berkeley e June 8-13




Paced Chirping

Sequence space

L

Data

af======

Sl

Y

Divided into packets

Guard Guard
Interval Interval

el e
_..--"" o

s e
,..u..---""" s
mmmm

I

—

* From “Paced Chirping: Rethinking TCP start-up”. Joakim S. Misund. Bob Briscoe. Netdev 1.3 Prague, March, 2019”

#sf19us e UC Berkeley e June 8-13



8 Il é -.......--'_".

1
2 |
3

16 o S 16 — gain=2 )
Q
4 | 16 16 |%§ 16 ( 16 16 — gain=2.5 )

roundY

* From “Paced Chirping: Rethinking TCP start-up”. Joakim S. Misund. Bob Briscoe. Netdev 1.3 Prague, March, 2019”

#sf19us e UC Berkeley e June 8-13



BBR TCP

Core ideas: “Heartbeat” Source

1. RTT and Bottleneck BW estimation (RTprop and BtIBw variables) + active
probing.
2. Uses periodic spike-looking active probes (+/- 25%) for Bottleneck BW testing.
3.  Uses periodic pauses for “Base RTT” measuring. i , STARTUP -
4.  Tracks App-limited condition (nothing to send) to prevent underestimation.
5. Doesn’t use AIMD in any form or shape. Uses pacing instead. Can handle ¥

sending speeds from 715bps to 2,9Tbps.
DRAIN —

cwnd control rules - 4 different phases:

L
+ Startup (beginning of the connection) PROBE BW >
* Drain (right after startup) - :
* Probe_BW (every 5 RTTS)
* Probe_RTT (periodically every 10 seconds)
“ PROBE_RTT |« y

#sf19us e UC Berkeley e June 8-13


https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_bbr.c

BBR TCP

: [ n
Optimal operating point :
(queue building point) ——__ , .
g \ | Eowm
g é :
= i i
T - ]
a 1 .
GO amount in flight BDP + BufSize

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

#sf19us e UC Berkeley e June 8-13



BBR TCP

=) i)

Delivery rate

, Est max BW = windowed max of BW samples

i amount in flight BDP + BufSize

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

#sf19us e UC Berkeley e June 8-13



BBR TCP

[ ] [ |
we Only ;
- minRTTis | ;
visible :
Uncertainty principle: :
We can not estimate max BW i
and min RTT at the same
time (point)!
Solution: .E Fyn
well, let’s do it sequentially! E‘
g w== Only
@ max BW .
=] D— :
is visible
BDP amount in flight BDP + BufSize

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

#sf19us e UC Berkeley e June 8-13



BBR TCP

Startup phase: exponential
probe for max BW.

Stopped if BW growth is
less than 25% for 3
sequential probes.

Delivery Rate

Amount Inflight

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

#sf19us e UC Berkeley e June 8-13



BBR TCP

Sequence Numbers (tcptrace) for 10.10.10.10:34612 — 10.10.10,12:51569

i Debit_Stmn prRETy

BtiIBw probes /

Drain

Startup
}. ~

#sf19us e UC Berkeley e June 8-13




BBR TCP

Drain phase: trying to get
rid of queue formed during
startup phase.

Delivery Rate

Amount Inflight

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”
#sf19us e UC Berkeley e June 8-13



BBR TCP

Probe BW phase:

do spikes in sending rate
(1,25 followed by 0.75
gains, each one of RTT
length)

Delivery Rate

Amount Inflight

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

#sf19us e UC Berkeley e June 8-13



BBR TCP

Probe RTT phase:

drop ewnd to 4 for 0,2 sec
every 10 sec

Delivery Rate

minimal packets in flight for max(0.2s, 1 round trip)

Amount Inflight [*] if continuously sending

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

#sf19us e UC Berkeley e June 8-13



BBR TCP

Expert question — Where are BtIBw probes?

cwnd
sstresh

800 /
600 -

400 ~

200

ALY

0 T T T
0 50 100 150

Time,s

#sf19us e UC Berkeley e June 8-13




BBR TCP

lql 1’ ( ” “'"1“” il ‘\ j Il | H"H"'H'\ f Hm [ \'”Wl" Ul Ml u[ |'H
\ w l“”r' |‘ur H ]Lr ’J"fi‘ tl' ,f‘n”].M uw .]([ l[vl"fw‘[ M‘ W un) [J'MM }Ull”r[
| I L_ L_A, &*'Lgm ST,

i ] b |

#sf19us e UC Berkeley e June 8-13



BBR TCP

Wireshark 10 Graphs: bbr.pcapng
RTprop probe

BtIBw probe

00000
20000,
00000 | ,. .‘. i ‘
. i. X 1 '
.t 3 o d 3 .
s 2 - : * ' P ‘s
SD000 : : : .. } ‘ y z RS
- \ a '§ q 8 3 LY
o 3 t.M‘ . | ) | 3 \
‘ TRl \J ‘ w
000 | | | ‘ |\
A ot A |
S wa/ o ol P
00008 ‘ y f Y '

#sf19us e UC Berkeley e June 8-13



BBR TCP

Wireshark 10 Graphs: bbr.pcapng

il B | 1|“\“ij~ | M

‘.y«‘

]
i : |

socoo - | *
.

- : r el ! ™t o ' =

{

-l - - - . o T - - -

=
Toww (1)

vs. Reno Friendliness

#sf19us e UC Berkeley e June 8-13



BBR TCP

Wireshark 10 Graphs: bbr.pcapng

....................

5-stream convergence

#sf19us e UC Berkeley e June 8-13



BBR TCP

Wireshark 10 Graphs: ethD (tcp)

il ‘ \ l 1 | )
‘ii | ' , m i T\l I ( ‘m‘ ‘ |,‘ 11 f,” !“H | :Ii*”[ ,r!nu“("ujl ',vrf\‘f.l).}l[' .\M .*ﬂ' ""‘1"““‘,'

1% loss link behavior — Great, full BW rate!

#sf19us e UC Berkeley e June 8-13



BBR TCP

Wireshark 10 Graphs: eth (tcp)

‘‘‘‘‘

\
*|\ | i\;‘ M”l, "‘ '[ w'

5% loss link behavior — 30Mbps out from 40, amazing!

#sf19us e UC Berkeley e June 8-13

MU

l{l,’ 4"; HIH "

' 1l»

———
.;—

1 '
, |




BBR TCP

Wireshark 10 Graphs: ethD (tcp)

10% loss link behavior — 24Mbit out of 40 — is it possible to kill it at all?

#sf19us e UC Berkeley e June 8-13



BBR TCP

Wireshark 10 Graphs: ethD (tcp)

T ()

20% loss link behavior — alright, we went too far ©, but...

#sf19us e UC Berkeley e June 8-13



Q BBR v2 TCP

Addresses the next issues:

* No ECN support

Ignores packet loss, susceptible to high loss rate + shallow buffer combination

Fairness with Reno/Cubic

Non-optimal for WiFi or any path with high ACK aggregation level

RTT probe is too aggressive

Source code isn’t available as of May 2019, algorithm is undergoing tests on Youtube servers.

#sf19us e UC Berkeley e June 8-13



Q BBR v2 TCP

CUBIC BBR v1 BBR v2
Model parameters to the N/A Throughput, RTT Throughput, RTT,
state machine max aggregation,
max inflight
Loss Reduce cwnd by 30% N/A Explicit loss rate target

on window with any loss

ECN REC3168 N/A DCTCP-inspired ECN
(Classic ECN)

Startup Slow-start until Slow-start until Slow-start until

RTT rises (Hystart) or tput plateaus tput plateaus or
any loss ECN/loss rate > target

* From “BBR v2. A Model-based Congestion Control”. Neal Cardwell, Yuchung Cheng and others. ICCRG at IETF 104 (Mar 2019)”.

#sf19us e UC Berkeley e June 8-13



(.\ Attacks on CA

Three different types of attack are aimed to make a sender faster:

1.  ACK division attack (intentional accelerating of CA algorithm)
2. DUP ACK spoofing (influencing on Fast Recovery phase)

3. Optimistic ACKing (let's ACK in advance more than we’ve got)

#sf19us e UC Berkeley e June 8-13



.\ Used flowgrind commands

for cong in 'reno’ 'scalable' 'htcp' 'bic’ 'nv' 'cubic' 'vegas' 'hybla' 'westwood' 'veno' 'yeah' 'illinois' 'cdg' 'bbr' 'Ip’;
do flowgrind -H s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233-i 0.005 -O s=TCP_CONGESTION=$cong -T s=60,d=0 | egrep S >
/homel/vlad/csv_no_loss/{$cong} 60s_no_loss.csv;

sleep 10
don: Regular 1-stream probe

for cong in 'reno’ 'scalable' 'htcp' 'highspeed' 'bic' 'cubic' 'vegas' 'hybla' 'nv' 'westwood' 'veno' 'yeah' 'illinois' 'cdg' 'bbr' 'Ip';

do flowgrind -n 5 -H s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -T s=90,d=0 | egrep S >
/home/vlad/{$cong} 90s_intra_fair.csv;
sleep 30

done 5-stream intra-protocol fairness

for cong in 'reno’ 'scalable' 'htcp' 'highspeed' 'bic' 'cubic' 'vegas' 'hybla' 'nv' 'westwood' 'veno' 'yeah' 'illinois' 'cdg' 'bbr' 'Ip';

do flowgrind -n 2 -F 0 -H s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -T s=90,d=0 -F 1 -H
$=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=reno -i 0.01 -T s=90,d=0 | egrep S >
/home/vlad/{$cong} 90s_reno_friendl.csv;
sleep 30

done vs. Reno Friendliness

flowgrind -n 5 -F 0 -H s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -T s=100,d=0 -F 1 -H
$=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -Y s=10 -T s=80,d=0 -F 2 -H
$=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -Y s=20 -T s=60,d=0 -F 3 -H
$=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -Y s=30 -T s=40,d=0 -F 4 -H
$=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -Y s=40 -T s=20,d=0| egrep *S >

/home/vlad/{$cong}_100s_Sstr_converg.csv 5-stream fairness with displaced start and different streams length

#sf19us e UC Berkeley e June 8-13




Usual questions:

1. Which CAis in use?

2. How to know current cwnd?

3. What are a, b values for different CA?

4. | observe static / stable BIF count. Is this CA limit?

Can you answer? If no, mail me to vlad@packettrain.net and we’ll discuss it.

Thanks for your attention!

#sf19us e UC Berkeley e June 8-13


mailto:vlad@packettrain.net

