
#sf19us • UC Berkeley • June 8-13

John Doe

SharkFest’19 US

#sf19us • UC Berkeley • June 8-13

Packet Corporation

To send or not to send?..

How TCP Congestion Control
algorithms work

Vladimir Gerasimov

Packettrain.NET

#sf19us • UC Berkeley • June 8-13

About me

• In IT since 2005
• Working for Unitop (IT integration)

• Where to find me:
• Twitter: @Packet_vlad

• Q&A: https://ask.wireshark.org

• Blog: packettrain.net

• Social group https://vk.com/packettrain (Russian)

https://ask.wireshark.org/
https://vk.com/packettrain

#sf19us • UC Berkeley • June 8-13

PCAPs

http://files.packettrain.net:8001/SF18/

Login = password = sf18eu

(caution: size!!)

http://files.packettrain.net:8001/SF18/

#sf19us • UC Berkeley • June 8-13

The beginning..

Oct 1986

The first (but not the last)
occurrence.

LBL UC Berkeley

400 yards (365m) distance
Tremendous 32kbps line speed

Throughput suddenly dropped
to…

400 bps!

Protocol flaw?..

#sf19us • UC Berkeley • June 8-13

Let’s capture!

What was on the wire?

The sender (4.2 BSD) floods the link with
tons of unnecessary retransmissions.

* because it sends on own full rate and have
inaccurate RTO timer

* some packets were retransmitted 5+ times!

#sf19us • UC Berkeley • June 8-13

Congestion collapse

This is called “congestion collapse” – when
goodput decreases by huge factor – up to 1000x!

[Fact: it was predicted by Nagle in 1984 before it occurred in real
life]

- Bad news: it NEVER disappears without taking
countermeasures.

- So a sender has to slow down its rate … or we
just add more buffer to router?

Max link speed

We want this

We have this…

Sending speed

R
e
c
e
iv

in
g
 s

p
e
e
d

“Cliff”

“Knee” (congestion onset) a.k.a.
Kleinrock’s operating point

#sf19us • UC Berkeley • June 8-13

Large buffers?

• “Let’s never drop a packet” approach.

• But… buffers could be large, but not endless.

• Good for absorbing bursts, but doesn’t help if long-term incoming rate > outgoing rate.

• Actually make things worse (high latency, “bufferbloat”) – so we don’t want to have even
endless buffers if we could.

“Buffer sitting” time component is a part of RTT!

Buffer is good for absorbing short spikes of traffic or for short-lived connections, but becomes a problem

for long-lived ones.
Key point

#sf19us • UC Berkeley • June 8-13

How to handle it?

Main decision made in [J88]:

“Smart endpoint, Dumb internet”

A sender (endpoint) has to slow down its transmission speed for some time
giving up self-interest for the interest of the whole system.

Modified sender should be capable to handle congestion without any
assistance from network nodes (though sometimes we’d like to have it… see later).

Senders are recommended to use agreed reaction to congestion signal.

#sf19us • UC Berkeley • June 8-13

Focus on sender

Fairness??

#sf19us • UC Berkeley • June 8-13

TCP Self-clocking

Equilibrium state is good, but…
only if:
- you are the only one sender,
- you’re already in it,
- there are no other variables.

Looks unrealistic.

TCP ‘Self-clocking’

this is bottleneck

“Hand-weight”
diagram

#sf19us • UC Berkeley • June 8-13

But in real world…

What about this topology?

• Random data transfer occurrence
• Random link parameters
• Unknown path

TCP has to do it’s job in such environment.

#sf19us • UC Berkeley • June 8-13

Design by [J88]

Application Layer

Lower Layers

Congestion
Control
“brain”

TCP

cwnd size

Feedback (loss)

control

ACK stream

data stream

Sender

*System-wide or per-socket settings are both possible

ACK streamdata stream

Problem: NO sending rate control

#sf19us • UC Berkeley • June 8-13

First solution by [J88]
1. Window-based control – hello, cwnd! –

W=min(cwnd, awnd), * where W –
number of unacknowledged packets; we also assume there
are no constraints in awnd in this session.

2. Feedback: packet loss as network congestion
indicator

3. Action profile: several stages for different
purpose each

4. RTO estimation enhancement

5. Fast retransmit mechanism

6. Focus on protection from collapse, not
efficiency etc.

Tahoe

93413595
Fast (a.k.a. “slow”)

start
Congestion
avoidance

When there are NO
congestion indicators

When there ARE
congestion indicators

sstresh

timeout

#sf19us • UC Berkeley • June 8-13

Tahoe – “slowfast kickstart”
Three tasks:
1. Establishing feedback circuit (main one!)

2. “Fast and dirty” probe for bandwidth.
3. Determining initial sstresh value for further use (important!)

Operation:
1. Start from initial window IW.
2. For every ACKed SMSS increase cwnd by one SMSS.

*Refer to slides from Christian Reusch for details.

Initial window size nowadays usually equals 10 packets.

Refer to this link: https://iw.netray.io/stats.html
You can change it in Linux OS: #ip route change default via ip.address dev eth0 initcwnd 15
And in Windows OS: https://andydavies.me/blog/2011/11/21/increasing-the-tcp-initial-congestion-window-on-
windows-2008-server-r2/

Fun fact

“It is always exponential shape!!”
Oh rly?? What about…(trace)

https://iw.netray.io/stats.html
https://andydavies.me/blog/2011/11/21/increasing-the-tcp-initial-congestion-window-on-windows-2008-server-r2/

#sf19us • UC Berkeley • June 8-13

Slow start problems

Alternative approach is being developed (“Paced chirping” by Joakim Misund, Bob Briscoe and others)

Do you think it’s the best option?

Questions/problems:

1. Too slow.
2. Too fast.
3. Behavior on extra-low queue

scenarios.
4. Spikes in queuing delay.
5. “Bad luck” drop.

#sf19us • UC Berkeley • June 8-13

Fun Facts

Tahoe was created using “bottom-up” approach: packet-
level rules first, macroscopic shape (flow-level) second.

All subsequent CA algorithms (almost) were developed
using the opposite “top-down” approach: flow-level first
(this is what I want to achieve), packet-level rules
second (this is how I achieve that).

Packet level

Flow level

#sf19us • UC Berkeley • June 8-13

Fun fact

Fun fact
As cwnd increases/decreases at least by SMSS value, its real graph never contains
inclined line segments, but only horizontal or vertical segments! So:

This is technically inaccurate! But totally OK to see
the whole picture

In fact it is “staircase-shaped”

#sf19us • UC Berkeley • June 8-13

Tahoe – Congestion avoidance
Core ideas:

1. Uses packet loss as a sign of congestion (feedback
type/input).

2. Uses AIMD approach as action profile
(control/output).

Has two modes (as any other algorithm):

1. With no observed signs of congestion.
2. With signs of congestion detected.

cwnd control rules:

cwnd = ቊ 𝑐𝑤𝑛𝑑 + 𝑎 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑐𝑤𝑛𝑑 ∗ 𝑏 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
For Tahoe, Reno 𝑎 =

1𝑐𝑤𝑛𝑑 ; 𝑏 = 0.5
*Refer to Christian’s session for more details

#sf19us • UC Berkeley • June 8-13

Fun Facts

True or False?
• cwnd in Reno in Congestion Avoidance phase grows as straight line until packet loss is

detected.

True or False?
• All congestion control algorithms since Tahoe react to packet loss.

True or False?
• AIMD is an obsolete congestion control algorithm, nowadays we have better ones.

#sf19us • UC Berkeley • June 8-13

Fun Facts

True or False?
• cwnd in Reno (CA stage) grows as straight line until packet loss is detected – FALSE!
• True: In addition to “staircase-shape” although this line looks straight, it is not! The more cwnd

size is, the less slope of this line is (refer to “Convergence” slide to see it!). Chances are we’ll
reach packet loss too early to spot this.

True or False?
• All congestion control algorithms react to packet loss – FALSE!
• True: There many kinds of congestion control algorithms. Many of them indeed react to packet

loss, but many others use different feedback type – delay. So, transition to congestion avoidance
state could be done with no observed packet loss at all!

True or False?
• AIMD is an obsolete congestion control algorithm, nowadays we have better ones – Partially true!
• True: AIMD itself is not a congestion control algorithm, this is just an approach, pattern to behave

while in congestion control stage. Many modern algorithms also use AIMD approach, but it’s
being eventually switched from. Remember also: AIMD ≠ Reno

#sf19us • UC Berkeley • June 8-13

Let’s rate it!
Well, how to decide which algorithm is better?

1. Efficiency (how full and steady is bottleneck utilization?)

2. Fairness (how do we share bottleneck capacity?)

3. Convergence capability (how fast do we approach

equilibrium state? How much do we oscillate later?)

4. “Collateral damage” (buffer overflow event rate, self-

inflicted latency)

#sf19us • UC Berkeley • June 8-13

Efficiency

Tahoe: bad Reno: better, but not ideal

Available BW

wasted
wasted

wasted

Available BW

wasted

wasted
wasted

#sf19us • UC Berkeley • June 8-13

Fairness, convergence

Introducing: Phase graph

Shows efficiency, fairness and convergence.

Here: an example for two senders.

Optimal operating point

Oscillation on Efficiency line Oscillation on Fairness line

Under-utilizing zone

Over-utilizing zone

Caution! Backup slide!

#sf19us • UC Berkeley • June 8-13

Fairness (5 streams Reno)

But what about non-TCP protocols? See later..

#sf19us • UC Berkeley • June 8-13

Convergence (1 stream)

Convergence speed

Oscillation

Under-utilizing zone

Over-utilizing zone
Available BW variation

RENO, RTT 100ms, 5 / 2.5 Mbit/s variable BW

#sf19us • UC Berkeley • June 8-13

Convergence (1 stream)

RENO, RTT 100ms,
20 Mbit/s constant BW

Convergence time
4…5 seconds

Packet loss event

#sf19us • UC Berkeley • June 8-13

Convergence (1 stream)

RENO, RTT 100ms,
20 Mbit/s constant BW

#sf19us • UC Berkeley • June 8-13

Complex challenges - 1

“Late news!”

• The sender will know about
“data leaving network rate” not
instantly, but only after ½ RTT.

• With packet drop at the
beginning of a path – it’s
getting worse.

• All this time the sender was
sending more and more
packets! Probably already
starting to slide down the cliff.

• It is getting worse when RTT
increases.

Dup ACKs flight time ≈ ½ RTT

Lost

“Gap” flight time ≤ ½ RTT

#sf19us • UC Berkeley • June 8-13

Complex challenges - 2
Non-TCP-compatible flows, unresponsive flows (“fairness” and “ TCP friendliness”).

 Non-TCP-compatible is a flow which reacts to congestion indicators differently, not like TCP.
 Unresponsive is a flow which does not react to congestion indicators at all.

“Fairness” “TCP friendliness”

This is how TCP flows with the same CA
algorithm share bottleneck BW with each other.

A part of it is “RTT fairness”.

This is how non-TCP flows or TCP flows with
different CA algorithms share bottleneck

bandwidth.

2 possible solutions of this problem:

 TCP friendly rate control [RFC5348] concept – intentional rate limiting. * a part of many modern CA

algorithms.

 Call for help (“network assisted congestion control”).

#sf19us • UC Berkeley • June 8-13

TCP friendly rate control

Core idea: create an equation for T (sending rate, packets/RTT) with argument p (packet loss coefficient).

T=f(p)

For standard TCP (Reno) the equation is:

T=
1.2𝑝

 Comparing actual T to “Reno –T” we can analyze relative fairness i.e. how aggressive protocol is vs.
standard TCP.

 Equations might be much more complex and take into account RTT, packet size.

#sf19us • UC Berkeley • June 8-13

Call for help!
Sometimes this isn’t enough so to ask network for help is a good idea!
 Routers know their own state (buffer load, link speed).
 Router can separate different kinds of flows.

Queue management

Passive (no) management Active (AQM)

Drop Signal

RED ECNWFQ FQ_CoDel

Tail drop

#sf19us • UC Berkeley • June 8-13

Timeline

Tahoe [J88]

Reno

Vegas

NewReno BIC

Westwood

H-TCP

Hybla

Veno

1988 1999 2000 2010 2018

Scalable

Compound

Illinois

Fast

Cubic LEDBAT

Sprout

DCTCP

Remy

PRR

BBRx

BBR2
(testing)

ABC

NV

BBR

Vivace

Nimbus

Indigo

YeAH

CDG

HSTCP

LP

FIT

XCP

#sf19us • UC Berkeley • June 8-13

Reno (1998)

Core idea:

Tahoe + “Fast Recovery”.

What do we address: non-optimal behavior during loss recovery.

Operation:

• Send Fast retransmission and then:
• Set sstresh to cwnd/2, set cwnd to sstresh+3.
• Increase cwnd on 1 SMSS for every received next Dup ACK (“inflate phase”).
• Decrease cwnd to sstresh after receiving higher ACK (“deflate phase”).

Reason: we treat Dup ACKs stream as good sign (because packets somewhere are leaving our
network!) But we are stuck with “unacknowledged” window edge because of packet loss and can’t use
capacity becoming available. So let’s manipulate cwnd temporarily for this period and bring things back
when it ends.

#sf19us • UC Berkeley • June 8-13

New Reno [RFC3782]

Core idea:

This is the same Reno + improved packet loss handling (only for multiple segments loss).

What do we address: loss burst.

Reason:
If multiple segments were lost, this can mess up our “inflate-deflate” strategy. We’ll deflate cwnd even if
we receive partial ACK (higher than the one in Dup ACK stream, but lower than packet we sent last before
loss). Therefore we’ll deflate cwnd too early!

Solution:
• Remember highest SEQ at the moment of packet loss detection (“Recovery point”).
• Do NOT deflate cwnd unless we receive an ACK for Recovery Point.

“The Classics”

#sf19us • UC Berkeley • June 8-13

Testbed

Eth0 bridge

Eth1

Ubuntu
18.04
virtual

NEWT

Control

Data

Mirror

Senders (physical)
Win 10 host

Software:

Control

Data

#sf19us • UC Berkeley • June 8-13

Software 1 - NEWT

https://blog.mrpol.nl/2010/01/14/network-emulator-toolkit/

#sf19us • UC Berkeley • June 8-13

Software 2 - flowgrind

 Allows separation between control and data
traffic.

 Large number of monitored values
(including current cwnd and sstresh size,
yeah!)

 Various traffic generation patterns.

 Individual TCP flow parameters setting.

 An ability to start flow from any PC running
flowgrind daemon.

 Possibility to redirect output table to text file
for parsing.

• Sensitive to incorrect arguments (often gets
stuck and reboot is needed).

• Problems with NAT’ed endpoints.
• No Windows version = no Compound TCP.

http://manpages.ubuntu.com/manpages/bionic/man1/flowgrind.1.html

#sf19us • UC Berkeley • June 8-13

NewReno on 40Mbps_100ms link

Time,s
0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

#sf19us • UC Berkeley • June 8-13

NewReno

Collateral damage: Almost 3 Buffer overflows / 797k Total Packets

#sf19us • UC Berkeley • June 8-13

NewReno

vs. Reno Friendliness

#sf19us • UC Berkeley • June 8-13

NewReno

5-stream convergence

#sf19us • UC Berkeley • June 8-13

NewReno

1% loss link behavior

#sf19us • UC Berkeley • June 8-13

Further progress

Several problems were observed with Reno:

 NewReno was doing its job fine those days, but later with the raise of LFN and wireless it became clear
that…

× It can’t work efficiently on high-BDP links (because cwnd fixed additive increase algorithm is too slow
and ½ cwnd drop is too much). To utilize fully 1Gbps link with 100ms RTT it needs packet loss rate of 2x10-8 or

less. With 1% loss in this link it can’t go faster than 3Mbps. After packet loss event it needs 4000 RTT cycles to recover.

× It treats any packet loss as congestion indicator (not good for wireless networks).

× Often visits “cliff” area doing damage (this is common among all loss-based algorithms).

× Has 1-Bit congestion indicator  inevitable high oscillation level (this is common among all loss-based
algorithms).

#sf19us • UC Berkeley • June 8-13

Further progress

How to make CC algorithm perform better? What to play with?
Remember feedback type and control? Let’s play with them!

Feedback type:

• Packet loss
• Delay
• Both of them
• ACKs inter-arrival timing
• ACKing rate
• Explicit signals (ECN)

#sf19us • UC Berkeley • June 8-13

CA – feedback types

Packet
Loss

Delay

Packet
Loss +
Delay

Explicit
signals

(New)Reno Tahoe

CUBICBIC

Vegas

DCTCP

Compound

Veno

CDG

Illinois

H-TCP

Westwood

HSTCP

Hybla

Scalable

Fast TCP

Yeah TCP

LP

XCP
CLTCP

D3TCP

DCQCN

#sf19us • UC Berkeley • June 8-13

CA – control (action) tweaking

What about control?

Step 1. Playing with AIMD factors (“knobs turning”)

cwnd = ቊ 𝑐𝑤𝑛𝑑 + 𝑎 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑐𝑤𝑛𝑑 ∗ 𝑏 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
Therefore changing angle and “drop height”.

We can play with 𝑏 factor

We can play with 𝑎 factor

𝑎 𝑏

Step 2. Adding more variables

Not constant 𝑎, but 𝑎=f(something)
Same with 𝑏.

Step 3. Shifting from AIMD to entirely different

model

(The most recent approach).

#sf19us • UC Berkeley • June 8-13

Scalable TCP – first “high BDP” try
Core ideas:

1. Aimed to deal with high BDP (first and simplest attempt to do it).
2. Uses packet loss as feedback (loss-based).
3. Uses MIMD approach as action profile (!).

cwnd control rules:

cwnd = ቊ 𝑐𝑤𝑛𝑑 + 0.01 ∗ 𝑐𝑤𝑛𝑑 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑐𝑤𝑛𝑑 ∗ 0,875 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 Much more efficient than Reno in high BDP networks.
 Recovery time after packet loss (200ms RTT, 10Gbps link) – 2,7 sec.
× RTT fairness, TCP friendliness – terrible. Kills Reno easily.

“Psycho” Source

“Scalable” means
“better scalability”

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_scalable.c

#sf19us • UC Berkeley • June 8-13

Scalable TCP

Time,s
0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

#sf19us • UC Berkeley • June 8-13

Scalable TCP

Collateral damage: 23 Buffer overflows / 812k Total Packets

#sf19us • UC Berkeley • June 8-13

Scalable vs NewReno

It’s unfair to say the least. 20Mbps, 100ms link.

Scalable

NewReno

BIF Scalable BIF NewReno

#sf19us • UC Berkeley • June 8-13

Scalable

5-stream convergence

#sf19us • UC Berkeley • June 8-13

Scalable

1% loss link behavior

#sf19us • UC Berkeley • June 8-13

Highspeed TCP [RFC 3649]

Core ideas:

1. Aimed to deal with high BDP.
2. Uses packet loss as feedback (loss-based).
3. Uses AIMD approach as action profile.
4. “Let’s live with Reno on low-BDP, but take what it can’t take on high-BDP”

cwnd control rules:

cwnd = ቊ 𝑐𝑤𝑛𝑑 + 𝑎(𝑐𝑤𝑛𝑑)/𝑐𝑤𝑛𝑑 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑐𝑤𝑛𝑑 − 𝑏 𝑐𝑤𝑛𝑑 ∗ 𝑐𝑤𝑛𝑑 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
Formula:

Main point is: 𝑎, 𝑏 values depend on current cwnd size. If cwnd is less than
38*SMSS -> act as Reno (more bits in input!)

• Behaves less aggressive if a path is not LFN (for TCP friendliness).
× RTT fairness - still bad.

“Medicated psycho” Source

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_highspeed.c

#sf19us • UC Berkeley • June 8-13

Highspeed TCP

Time,s
0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

#sf19us • UC Berkeley • June 8-13

Highspeed TCP

Collateral damage: 7 Buffer overflows / 790k Total Packets

#sf19us • UC Berkeley • June 8-13

Highspeed TCP

vs. Reno Friendliness

#sf19us • UC Berkeley • June 8-13

Highspeed TCP

5-stream convergence

#sf19us • UC Berkeley • June 8-13

Highspeed TCP

1% loss link behavior

#sf19us • UC Berkeley • June 8-13

CUBIC TCP

Core ideas:

1. Aimed to deal with high BDP.
2. Uses packet loss as feedback.
3. Uses cubic function as action profile (concave/convex parts).
4. Default for all Linux kernels > 2.6.18, implemented in Windows since Win10.
cwnd control rules:

In case of packet loss:
1. Set Wmax to cwnd;
2. Set cwnd, sstresh to (1 - β)*cwnd where default β=0.8

3. Grow cwnd using cubic function:

W(t) = C(t – K)3 + Wmax where:

Main point: approach last packet loss point slowly and carefully, but if there is no
more packet loss here – begin ramp up to use possibly freed up resources.

Additional techniques used: TCP friendly region, Fast convergence, Hybrid slow
start.

 Coexistence with Reno on non-LFN links – moderate
 RTT fairness - good

Last remembered value where packet
loss happened

Concave region

Convex region

“Ready-Steady-Go!” Source

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_cubic.c

#sf19us • UC Berkeley • June 8-13

CUBIC TCP

Time,s
0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

#sf19us • UC Berkeley • June 8-13

CUBIC TCP

Collateral damage: 14 Buffer overflows / 790k Total Packets

#sf19us • UC Berkeley • June 8-13

CUBIC TCP

vs. Reno Friendliness

#sf19us • UC Berkeley • June 8-13

CUBIC TCP

5-stream convergence

#sf19us • UC Berkeley • June 8-13

CUBIC TCP

1% loss link behavior

#sf19us • UC Berkeley • June 8-13

CUBIC Fun Fact

If you look at CUBIC source code you’ll spot some parameters can be tweaked!

These knobs can be found (for Ubuntu) at /sys/module/tcp_cubic/parameters

#sf19us • UC Berkeley • June 8-13

Hybrid slow start

Time,s
0 5 10 15 20

0

200

400

600

800

1000

1200

cwnd
sstresh
RTT

Time,s
0 5 10 15 20

0

200

400

600

800

1000

1200

cwnd
sstresh
RTT

Problem: high aggressiveness during final slow
start phase.

Solution: estimate a point where to exit Slow
Start mode.

Methods:

• ACK train length measuring method.
• Inter-frame delay method.

Built-in in CUBIC algorithm.
Method can be switched.

#sf19us • UC Berkeley • June 8-13

VEGAS TCP

Core ideas:

1. First try to build delay-based algorithm (1994).
2. Uses delay as feedback (purely delay-based).
3. Uses AIAD as action profile.

cwnd control rules:

1. Measure and constantly update min RTT (“BaseRTT”)
2. For every RTT compare Expected Throughput (cwnd / BaseRTT) with

Actual Throughput (cwnd / RTT)
3. Compute difference = (Expected - Actual)/BaseRTT
4. Look where in range it lies and act accordingly (1 per RTT cwnd update

frequency).
5. Switch to Reno if there are not enough RTT samples.

 Very smooth
 Doesn’t act on Cliff zone
 Induces small buffer load, keeps RTT small

× Gets beaten by any loss-based algorithm
× Doesn’t like small buffers
× Doesn’t like small RTTs

α/RTT
β/RTT

Increase Zone Decrease Zone

“Pacifist” Source

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_vegas.c

#sf19us • UC Berkeley • June 8-13

VEGAS TCP

Time,s
0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

#sf19us • UC Berkeley • June 8-13

VEGAS TCP

When it’s alone – this is impressive! Collateral damage: almost unnoticeable / 767k Packets

#sf19us • UC Berkeley • June 8-13

NewReno vs. VEGAS TCP

When VEGAS is not alone – this is a shame..

VEGAS

NewReno

BIF Vegas

BIF NewReno

#sf19us • UC Berkeley • June 8-13

VEGAS TCP

5-stream convergence

#sf19us • UC Berkeley • June 8-13

VEGAS TCP

1% loss link behavior

#sf19us • UC Berkeley • June 8-13

ILLINOIS TCP

Core ideas:

1. Uses packet loss and delay as feedback.
2. Uses modified AIMD with delay-dependent variables as action

profile.

cwnd control rules:

cwnd = ቊ 𝑐𝑤𝑛𝑑 + α/𝑐𝑤𝑛𝑑 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑(1 − β) ∗ 𝑐𝑤𝑛𝑑 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
Measure min RTT and max RTT for each ACK. Track them.

Compute α:
• If average delay is at minimum (we are uncongested), then use large

alpha (10.0) to grow cwnd faster.
• If average delay is at maximum (getting congested) then use small

alpha (0.3)

Compute β:
• If delay is small (10% of max) then β = 1/8
• If delay is up to 80% of max then β = 1/2
• In between is a linear function

α

αmax

αmin

delaymin delaymax

“Careful” Source

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_illinois.c

#sf19us • UC Berkeley • June 8-13

ILLINOIS TCP

Time,s
0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

#sf19us • UC Berkeley • June 8-13

ILLINOIS TCP

Collateral damage: 2 Buffer overflows / 815k Total Packets

#sf19us • UC Berkeley • June 8-13

Illinois TCP

vs. Reno Friendliness

#sf19us • UC Berkeley • June 8-13

Illinois TCP

5-stream convergence

#sf19us • UC Berkeley • June 8-13

Illinois TCP

1% loss link behavior

#sf19us • UC Berkeley • June 8-13

Compound TCP

Core ideas:

1. Uses combination of packet loss and delay as feedback.
2. Uses AIMD additionally altered by delay window as action profile.
3. Only for Windows OS since Vista.

cwnd control rules:

win = min (cwnd + dwnd, awnd)

Where: cwnd – as in Reno, dwnd – as in Vegas.

cwnd = ቊ 𝑐𝑤𝑛𝑑 + 1/(𝑐𝑤𝑛𝑑 + 𝑑𝑤𝑛𝑑) 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑(1 − β) ∗ 𝑐𝑤𝑛𝑑 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
Main point: combine fairness of delay-based CA with aggressiveness of
loss-based CA.

 Coexistence with Reno on non-LFN links – good
 RTT fairness - good

“Windows”
cwnd

dwnd

cwnd + dwnd

#sf19us • UC Berkeley • June 8-13

Compound TCP

Link: 20mpbs, 200ms RTT. Tested using ntttcp.exe, Win10 – Win10. Sorry, no cwnd graph..

#sf19us • UC Berkeley • June 8-13

WESTWOOD TCP

Core ideas:

1. Main idea: an attempt to distinguish between congestive and non-congestive losses.
2. Uses packet loss as feedback.
3. Uses modified AIMD as action profile.
4. Continuously estimates bandwidth (BWE, from incoming ACKs) and minimal RTT

(RTTnoLoad)

cwnd control rules:

• Calculates “transit capacity” : BWE×RTTnoLoad (represents how many packets can be in transit)
• Never drops cwnd below estimated transit capacity.

cwnd (on loss) = ቊ𝑚𝑎𝑥(𝑐𝑤𝑛𝑑/2, 𝐵𝑊𝐸 × 𝑅𝑇𝑇𝑛𝑜𝐿𝑜𝑎𝑑) 𝑖𝑓 𝑐𝑤𝑛𝑑 > 𝐵𝑊𝐸 × 𝑅𝑇𝑇𝑛𝑜𝐿𝑜𝑎𝑑𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒, 𝑖𝑓 𝑐𝑤𝑛𝑑 ≤ 𝐵𝑊𝐸 × 𝑅𝑇𝑇𝑛𝑜𝐿𝑜𝑎𝑑
• If no loss is observed – acts similarly to Reno.

“Wireless warrior” Source

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_westwood.c

#sf19us • UC Berkeley • June 8-13

WESTWOOD TCP

Time,s
0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

2. Remember BWE×RTTnoLoad

4. Drop cwnd to BWE×RTTnoLoad

3. Packet loss

1. RTT begin to grow

#sf19us • UC Berkeley • June 8-13

WESTWOOD TCP

Collateral damage – same as Reno. Good for lossy links. With 1% loss beats CUBIC by x5 factor.

#sf19us • UC Berkeley • June 8-13

WESTWOOD TCP

vs. Reno Friendliness

#sf19us • UC Berkeley • June 8-13

WESTWOOD TCP

5-stream convergence

#sf19us • UC Berkeley • June 8-13

WESTWOOD TCP

1% loss link behavior

#sf19us • UC Berkeley • June 8-13

Comparison charts

Intra-protocol fairness RTT fairness

* From “EXPERIMENTAL STUDY OF CONGESTION CONTROL ALGORITHMS IN FAST LONG DISTANCE NETWORK”. Guodong Wang, Yongmao Ren and Jun Li.

#sf19us • UC Berkeley • June 8-13

Comparison charts

Inter-protocol fairness

* From “EXPERIMENTAL STUDY OF CONGESTION CONTROL ALGORITHMS IN FAST LONG DISTANCE NETWORK”. Guodong Wang, Yongmao Ren and Jun Li.

#sf19us • UC Berkeley • June 8-13

The future?

• Multiple signals (ACK inter-arrival time, timestamps, delay with minimal RTT value tracking, packet loss).

• Learning-based (the use of assumption model).

• No pure ACK clocking (switch to combination of ACK clocking + pacing model). cnwd + time gap from last sent packet.

• Moving into application layer (PCC, QUIC – on top of UDP).

• Pushing CA into user-space + using API (concept, Linux).

• Reinventing SlowStart (Flow-start, “Paced Chirping”, now more for datacenter environment).

Vivace Online learning

Remy Parameters “brute-forcing”

Sprout Stochastic forecasts, for mobile

BBR Heartbeat probes, BW estimator

ABC Explicit signaling

Indigo Machine learning

SCReAM For LTE+multimedia
Omniscient “Ideal” TCP

#sf19us • UC Berkeley • June 8-13

Paced Chirping

* From “Paced Chirping: Rethinking TCP start-up”. Joakim S. Misund. Bob Briscoe. Netdev 1.3 Prague, March, 2019”

#sf19us • UC Berkeley • June 8-13

Paced Chirping

* From “Paced Chirping: Rethinking TCP start-up”. Joakim S. Misund. Bob Briscoe. Netdev 1.3 Prague, March, 2019”

#sf19us • UC Berkeley • June 8-13

BBR TCP

Core ideas:

1. RTT and Bottleneck BW estimation (RTprop and BtlBw variables) + active
probing.

2. Uses periodic spike-looking active probes (+/- 25%) for Bottleneck BW testing.
3. Uses periodic pauses for “Base RTT” measuring.
4. Tracks App-limited condition (nothing to send) to prevent underestimation.
5. Doesn’t use AIMD in any form or shape. Uses pacing instead. Can handle

sending speeds from 715bps to 2,9Tbps.

cwnd control rules - 4 different phases:

• Startup (beginning of the connection)
• Drain (right after startup)
• Probe_BW (every 5 RTTs)
• Probe_RTT (periodically every 10 seconds)

“Heartbeat” Source

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_bbr.c

#sf19us • UC Berkeley • June 8-13

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

Optimal operating point

(queue building point)

#sf19us • UC Berkeley • June 8-13

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

#sf19us • UC Berkeley • June 8-13

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

Uncertainty principle:

We can not estimate max BW
and min RTT at the same
time (point)!

Solution:

well, let’s do it sequentially!

#sf19us • UC Berkeley • June 8-13

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

Startup phase: exponential
probe for max BW.

Stopped if BW growth is
less than 25% for 3
sequential probes.

#sf19us • UC Berkeley • June 8-13

BBR TCP

BtlBw probes

Drain

Startup

#sf19us • UC Berkeley • June 8-13

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

Drain phase: trying to get
rid of queue formed during
startup phase.

#sf19us • UC Berkeley • June 8-13

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

Probe BW phase:

do spikes in sending rate
(1,25 followed by 0.75
gains, each one of RTT
length)

#sf19us • UC Berkeley • June 8-13

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

Probe RTT phase:

drop cwnd to 4 for 0,2 sec
every 10 sec

#sf19us • UC Berkeley • June 8-13

BBR TCP

Time,s
0 50 100 150

0

200

400

600

800
cwnd
sstresh
RTT

Expert question – Where are BtlBw probes?

#sf19us • UC Berkeley • June 8-13

BBR TCP

Let’s zoom in (next page)

#sf19us • UC Berkeley • June 8-13

BBR TCP

BtlBw probe
RTprop probe

#sf19us • UC Berkeley • June 8-13

BBR TCP

vs. Reno Friendliness

#sf19us • UC Berkeley • June 8-13

BBR TCP

5-stream convergence

#sf19us • UC Berkeley • June 8-13

BBR TCP

1% loss link behavior – Great, full BW rate!

#sf19us • UC Berkeley • June 8-13

BBR TCP

5% loss link behavior – 30Mbps out from 40, amazing!

#sf19us • UC Berkeley • June 8-13

BBR TCP

10% loss link behavior – 24Mbit out of 40 – is it possible to kill it at all?

#sf19us • UC Berkeley • June 8-13

BBR TCP

20% loss link behavior – alright, we went too far , but…

#sf19us • UC Berkeley • June 8-13

BBR v2 TCP

Addresses the next issues:

• No ECN support

• Ignores packet loss, susceptible to high loss rate + shallow buffer combination

• Fairness with Reno/Cubic

• Non-optimal for WiFi or any path with high ACK aggregation level

• RTT probe is too aggressive

Source code isn’t available as of May 2019, algorithm is undergoing tests on Youtube servers.

#sf19us • UC Berkeley • June 8-13

BBR v2 TCP

* From “BBR v2. A Model-based Congestion Control”. Neal Cardwell, Yuchung Cheng and others. ICCRG at IETF 104 (Mar 2019)”.

#sf19us • UC Berkeley • June 8-13

Attacks on CA

Three different types of attack are aimed to make a sender faster:

1. ACK division attack (intentional accelerating of CA algorithm)

2. DUP ACK spoofing (influencing on Fast Recovery phase)

3. Optimistic ACKing (let’s ACK in advance more than we’ve got)

#sf19us • UC Berkeley • June 8-13

Used flowgrind commands
for cong in 'reno' 'scalable' 'htcp' 'bic' 'nv' 'cubic' 'vegas' 'hybla' 'westwood' 'veno' 'yeah' 'illinois' 'cdg' 'bbr' 'lp';
do flowgrind -H s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -i 0.005 -O s=TCP_CONGESTION=$cong -T s=60,d=0 | egrep ^S >
/home/vlad/csv_no_loss/{$cong}_60s_no_loss.csv;
sleep 10
done

for cong in 'reno' 'scalable' 'htcp' 'highspeed' 'bic' 'cubic' 'vegas' 'hybla' 'nv' 'westwood' 'veno' 'yeah' 'illinois' 'cdg' 'bbr' 'lp';
do flowgrind -n 5 -H s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -T s=90,d=0 | egrep ^S >
/home/vlad/{$cong}_90s_intra_fair.csv;
sleep 30
done

for cong in 'reno' 'scalable' 'htcp' 'highspeed' 'bic' 'cubic' 'vegas' 'hybla' 'nv' 'westwood' 'veno' 'yeah' 'illinois' 'cdg' 'bbr' 'lp';
do flowgrind -n 2 -F 0 -H s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -T s=90,d=0 -F 1 -H
s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=reno -i 0.01 -T s=90,d=0 | egrep ^S >
/home/vlad/{$cong}_90s_reno_friendl.csv;
sleep 30
done

flowgrind -n 5 -F 0 -H s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -T s=100,d=0 -F 1 -H
s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -Y s=10 -T s=80,d=0 -F 2 -H
s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -Y s=20 -T s=60,d=0 -F 3 -H
s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -Y s=30 -T s=40,d=0 -F 4 -H
s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -Y s=40 -T s=20,d=0| egrep ^S >
/home/vlad/{$cong}_100s_5str_converg.csv

5-stream intra-protocol fairness

Regular 1-stream probe

vs. Reno Friendliness

5-stream fairness with displaced start and different streams length

#sf19us • UC Berkeley • June 8-13

Q&A

Usual questions:

1. Which CA is in use?
2. How to know current cwnd?
3. What are a, b values for different CA?
4. I observe static / stable BIF count. Is this CA limit?

Can you answer? If no, mail me to vlad@packettrain.net and we’ll discuss it.

Thanks for your attention!

mailto:vlad@packettrain.net

