
#sf22us

When is a packet
not a packet?

Mike Kershaw
Kismet Wireless / Hak5

#sf22us

#sf22us

I am Mike Kershaw
I do WiFi and radio and packet stuff.

You can find me at @KismetWireless

Packets!?

#sf22usScattershot

◉ Huge topic but we’ll try
◉ When and why SDR
◉ Some basic SDR concepts
◉ Digging into some real examples of decoding

techniques
◉ Hopefully enough to start a journey!

#sf22usPackets and interfaces

● Normally we capture packets from network
interfaces

● Ethernet, WiFi, Bluetooth, dedicated NIC
● Even monitor mode WiFi comes in over a

network interface
● Pcap + Wireshark
● … but what else is out there?

#sf22usAliens. Probably.

#sf22usBut also…

◉ Power meters
◉ Airplanes
◉ Weather stations
◉ Light switches
◉ Tire pressure monitors
◉ Random IOT
◉ More

#sf22usStandard hardware

◉ Fixed-frequency radios
◉ Demodulation and decode in hardware
◉ Returns data to the OS as packets
◉ Usually talks libpcap
◉ Completely useless at anything else
◉ Your WiFi card isn’t going to see BT

#sf22usSoftware Defined Radio

◉ Multi-frequency receiver
◉ Analog-to-digital converter
◉ Sometimes additional accelerators like FPGA

or dedicated processors
◉ Has no idea what a packet is
◉ Sends constant stream of data 100% of the

time

#sf22usSoftware Defined Radio

◉ Swiss army knife
◉ So why isn’t everything done with SDR

instead of custom chips?
◉ Have you ever tried to eat a meal with a

Swiss army knife?

#sf22us

#sf22usSDR Plusses

◉ Discover new protocols & devices
◉ Capture “infinite” protocols with a single

device
◉ Capture signals no commercial HW exists for
◉ Can manipulate protocols in ways dedicated

HW can’t

#sf22usSDR Negatives

◉ Can be expensive
◉ Requires a lot of power (energy)
◉ Requires a lot of CPU
◉ Requires lots of bandwidth (usb, ram, etc)
◉ Rarely a plug-and-play solution
◉ Some pre-made tools, but a lot of

“gradware”

#sf22usSDR vs Dedicated

◉ ASIC will always win if one is obtainable

◉ Fixed frequency = less interference

◉ Dedicated HW uses less power

◉ Only bothers the OS when there is a packet

◉ A $750 SDR can just about be a $20 WiFi card

#sf22usSDR Hardware

◉ Lots of options now
◉ Cheap

○ RTL-SDR

◉ Medium-to-Pro
○ HackRF, BladeRF, LimeSDR, Airspy, Lime

◉ Lab-grade
○ BladeRF, USRP

#sf22us

What makes expensive SDR
“better”

◉ Frequency range
○ What RF frequencies the HW can tune to

◉ Sample depth
○ Fidelity of captured data

◉ Transmit capability
○ Many are RX only

◉ Additional hardware
○ On-board FPGA, etc

#sf22us

Cheap doesn’t mean bad
(kinda)

◉ The RTL-SDR is dirt cheap ($25) but still very usable

◉ It’s not good, really, but it’s fine for a lot!

◉ Looking at many protocols at the same time means
you need many SDRs

◉ Why spend $400+ when you’re just starting out?

◉ Why spend $400+ when $20 is enough sometimes?

◉ Great intro to the SDR space

#sf22usSpecs

◉ What specs are you likely to see?
◉ How much you care depends on what you

plan to do
◉ Remember: “Bigger number means better

tool”
◉ “Better tool means better person”
◉ Not really

#sf22usFrequency Ranges

◉ Everything happens at a frequency
◉ Measured in Hertz (Hz)
◉ 1000Hz = 1KHz, 1000KHz = 1MHz, etc
◉ WiFi is at 2400MHz. GPS is around 1200MHz.
◉ Non-licensed (consumer) gear tends to

cluster in ISM bands
◉ 433MHz / 900MHz / 2400MHz / 5800MHz

#sf22usRanges of SDRs

◉ Every SDR will list the ranges it can tune to
◉ Determined by HW
◉ RTL-SDR ~ 32MHz to 2200MHz but varies
◉ HackRF 0MHz – 6000MHz
◉ BladeRF 47MHz – 6000MHz
◉ USRP – Varies by model and module
◉ Others – Often 10MHz – 3500MHz

#sf22usRF Bandwidth

◉ How much frequency captured at once
◉ Determines how wide a signal you can see
◉ More bandwidth = more data = more

computer bandwidth, too! (RAM, CPU)
◉ Most SDR support a range of bandwidths
◉ You need as much bandwidth as your

protocol uses

#sf22usBandwidth

◉ RTL-SDR – 2.4MHz
◉ HackRF – 20MHz
◉ BladeRF – 56MHz
◉ USRP – Varies, ~20MHz to 80MHz+

#sf22usAntennas

◉ Antennas are based on frequency
◉ For WiFi, all antennas are designed to work

with WiFi frequencies so they’re all
interchangeable

◉ For SDR, this isn’t true since you’re likely
covering wildly different frequencies

#sf22us

#sf22usGarbage antennas

◉ The antennas that come with most cheap
SDRs are garbage

◉ Better than nothing, but maybe only barely
◉ Consider picking up some proper ones,

they’re cheap

#sf22usVariable antennas

◉ Old-school FM radio telescopic antennas
◉ The amount you extend the antenna

determines the frequency
◉ Some actually have it marked
◉ Often ones good at wide-band RX are bad at

TX

#sf22us

#sf22usDedicated antennas

◉ Easy to find dedicated antennas for most
frequency bands you’ll care about

◉ 433mhz, 900mhz, etc
◉ Large HAM community for antenna resources
◉ Worth considering when you get more

serious

#sf22usWrong antenna?

◉ What happens w/ the wrong antenna?
◉ For RX, just a crappy signal
◉ For TX, more of a problem
◉ Don’t TX with the wrong antenna
◉ Worst case, you can damage your

equipment!

#sf22usAntenna gain

◉ Doesn’t make more signal, just directs it
◉ More gain isn’t always better
◉ Signal comes from somewhere – more gain in

horizontal means missing signals
above/below

◉ Don’t go crazy buying the biggest antenna
first

#sf22usFilters

◉ We can filter in SW but that only solves
some of the problem

◉ Commercial radios use tight hardware filters
to exclude all other bands

◉ Signal outside our target band can swamp
the RX

◉ Signal can show up as aliases

#sf22usAliasing

◉ Fundamental to SDR internals
◉ SDR takes target frequency and resamples it

during capture to an intermediary frequency
◉ Signals on the “opposite side” of the

intermediary are indistinguishable from
where you tuned

◉ End result: You’ll see FM radio all over!

#sf22usRejecting signal

◉ No way to prevent aliasing in software
◉ You can buy dedicated hardware filters
◉ Placed in-line with your antenna before the

radio
◉ Can be powered or passive
◉ But you need one for each band

#sf22usConnectors

◉ SMA is the most common
◉ Most WiFi uses reverse-polarity connectors
◉ Most SDR uses traditional connectors
◉ Don’t mix them up!
◉ Either you’ll get no connectivity at all…
◉ … or you’ll mash the two pins together and

bend one

#sf22usObstructions

◉ Lower frequencies go through obstacles
better

◉ Most SDR is relatively low frequency…
◉ But in a basement or bottom of a building

isn’t going to do you any favors
◉ An outdoor antenna can be a huge benefit

#sf22us

#sf22usSafety

◉ If you put an antenna outside
◉ Be aware of power lines!
◉ Be aware of lightning!
◉ Unless you’re ready to set up proper

lightning arrestors…
◉ Don’t make a permanent outdoor antenna!

#sf22usTalking to a SDR

◉ Most are USB2 or USB3
◉ Some PCI
◉ Some gig-e or 10gbe
◉ There are no standards for talking to a SDR
◉ Most just shove data as fast as possible

#sf22usSDR Tools

◉ GNU Radio
○ Gold standard open source radio framework

◉ Matlab
○ Commercial math framework

◉ LiquidSDR
○ Low-level C library for signal processing

#sf22usExploration tools

◉ GQRX
○ Waterfall, basic demod for some common formats

◉ SDRSharp
○ Common windows tool

◉ SDR++
○ New multi-platform exploration tools

◉ Universal Radio Hacker (URH)
○ Multi-platform protocol decoding & exploration

#sf22usGQRX

#sf22usSDR#

#sf22usSDR++

#sf22usUniversal Radio Hacker

#sf22usInstalling the tools

◉ Linux: Ubuntu, Pentoo, others have
packages

◉ DragonOS is a custom Linux distro for SDR
◉ MacOS: Brew can install many of the tools
◉ Windows: More of a hassle due to USB driver

model, but doable

#sf22usLooking for signals

◉ Research the protocol/device
◉ Some devices label the frequencies
◉ FCC filings
◉ Public docs (for large public protocols)
◉ Scan around with survey tools

#sf22usFCC

#sf22usFCCID.io

#sf22usKnow your laws!

#sf22usLegalisms

◉ Know the laws for your country / region!
◉ In the US this is governed by the FCC
◉ Transmitting without a license is almost

always illegal
◉ Listening can still be illegal on some

frequencies in some jurisdictions!
◉ In the US, can vary by court district!

#sf22usLegalisms (2)

◉ Can someone tell you’re listening to a
frequency?

◉ Not unless you talk about it.
◉ Is it still illegal to do it?
◉ Sure is! (depending on country)

#sf22usLegalisms (3): Never, ever

◉ Cell phone frequencies
◉ Pager frequencies
◉ Transmitting on any licensed band
◉ Especially transmitting on cell, pager, and

GPS
◉ Considered terrorism in the US for

interfering with E-911

#sf22usLegalisms (4)

◉ Moral vs Legal
◉ Is it immoral to listen to a random

transmission to learn more?
◉ Personally I’d say usually not…
◉ Still illegal! So don’t do it!
◉ We’re only going to talk about legit things to

listen to today!

#sf22usExisting one-shot tools

◉ ADSB (airplane): Dump1090, Kismet, Others
◉ AMR (power meters): rtl-amr, Kismet
◉ TPMS/Thermometers/Weather

Stations/Hundreds of others: rtl_433
◉ Great for pulling out data from existing

devices, but what if we want to go deeper?

#sf22usADSB

#sf22us

#sf22usRTL433

#sf22usIdentifying signals

◉ GQRX and other waterfall tools
◉ Can look for transmission bursts
◉ Can begin to guess the type of signal

#sf22usFM Radio

◉ Everyone’s favorite first thing to look at
◉ Almost any SDR can see it
◉ It’s super loud and obvious

#sf22us

#sf22usExtra fun in FM

◉ FM waveform in the center
◉ Can see the audio wobble
◉ Notice the weird shoulders?
◉ Those are the digital sidebands
◉ HD FM radio + Weather + Traffic +

song identifiers

#sf22usSo we found a signal…

◉ So we scrolled around with a tool and found
our target

◉ Lets say we found something from a wireless
thermometer

◉ Now we get packets, yeah?
◉ Not so fast…

#sf22usWhat we get from the SDR

◉ Almost all SDR reports signal as “IQ”

◉ Complex number with real and imaginary components

◉ Forms sine waves with different amplitude and phase

◉ Deep dive into IQ would be a week-long event

◉ TL;DR it lets us model amplitude, frequency, and
phase of a signal

#sf22usSampling rates

◉ How many IQ samples per second the radio
can deliver to us

◉ Similar to audio fidelity – more samples is
more detail

◉ How many do you need?
◉ “It depends”
◉ At least 2x the transition speed of the signal

#sf22us2x = Nyquist

◉ “Nyquist Rate” is at least 2x the frequency
of the signal

◉ 1mbit rate in the air? You need at least
2mbit sample rate!

◉ More samples = more fidelity
◉ … but more samples = more CPU, RAM,

network and storage…

#sf22usBut why?

◉ Why can’t we just sample at the rate we
need?

◉ If the “beat” of the sample matches the
signal, you either capture it perfectly, or
not at all!

◉ … And you don’t know which!

#sf22us1x sample mismatch

#sf22us2x sample

#sf22us10x sample

#sf22usPicking a sample rate

◉ “It depends”
◉ Often a SDR will support specific fixed

sample rates, pick the closest
◉ 2x your signal minimum but also the least

you can get away with

#sf22us

We’re all Layer 1 down here,
Billy

◉ The OSI 7 layer model? Forget it.
◉ We’re going to be dealing with the physical

layer almost exclusively
◉ Many of these protocols don’t even HAVE a

MAC layer equivalent!
◉ Access control what’s this I don’t even
◉ So, lets define some terms…

#sf22usOh no we’re starting with bits

◉ A bit is a 0 or a 1. Sure.
◉ Unfortunately, this is about to get a lot

more confusing.
◉ When talking about signals, we have both

the bit in the air, but also the bit of data
encoded in the protocol!

◉ They’re not the same!

#sf22usEncoding a bit in the air

◉ Easy
○ OOK (on/off like morse code)
○ ASK (amplitude – louder is 1, softer is 0)

◉ Harder
○ FSK (frequency shift to indicate 0 or 1)
○ PSK (phase shift to indicate 0 or 1)

◉ F-Off Black Magic
○ QAM, OFDM, n-PSK

#sf22usOOK – Notice the clear on/off

#sf22usFSK – Notice the two horns

#sf22usFSK vs FM

Digital vs Analog

#sf22usVariants

◉ For every type of encoding there are
variants

◉ Different bandwidth (amount of frequency)
used

◉ Different data rates
◉ But the same basic schemes

#sf22usMixed Variants

◉ Advanced protocols can combine multiple
methods

◉ Encode on frequency + phase to get 2 states
per cycle

◉ Encode on multiple frequencies to get more
states per cycle

#sf22usSymbols

◉ When talking about what’s being sent at the
radio layer, we need to think in symbols

◉ A symbol can encode one – or many – bits
◉ A symbol can require multiple transitions (ie

“bits” in the air) to be encoded
◉ So to send a ‘1’ bit of logical data, you may

need to transmit ‘1101’

#sf22usSymbol encoding

◉ Transmission (FSK/ASK/OOK) tells us how to
differentiate between states

◉ But how do we know what a single bit is?
◉ We don’t know when the other end started

transmitting, or if we’ve even seen all of the
transmission.

#sf22usRepeating bits

◉ ‘1111’. Is that four ‘1’ bits? Is that two ‘1’
bits but we read them too slow?

◉ ‘111’. Is that three ‘1’s? Or two and we
were slightly off? Or 4 and we missed one?

◉ Encoding methods exist to help solve this…
◉ But encoding requires us to transmit more

in-air bits to get one logical bit!

#sf22usSolving encoding

◉ Lots of ways to solve encoding
◉ All based on making very clear what the

content is
◉ Many options

○ NRZ
○ Manchester
○ More

#sf22usManchester

◉ Manchester encoding is a popular method
used by many simple devices

◉ A zero is always “low-high” (or reversed)
◉ A one is always “high-low” (or reversed)
◉ So a logical ‘1111’ would be ‘10101010’
◉ Now we’re less ambiguous, but it takes

twice as long!

#sf22usManchester

#sf22usSidebar: Lies!

◉ Ever wonder why you only get about 1/3 the
speed claimed on WiFi?

◉ This is part of why!
◉ Marketing brags about the rate in the air –

not the rate of symbols!
◉ Lies, and speed graphs of also lies!

#sf22usFrequency & Bandwidth

◉ Transmission frequency is where in the spectrum it
lives

◉ Basic WiFi starts at 2.4GHz or 2400MHz for instance

◉ Bandwidth is how much of the frequency it uses

◉ Basic WiFi uses 20MHz, so it could go for instance
from 2400MHz to 2420MHz

◉ Embedded sensors tend to use bandwidth in the KHz

#sf22usPreamble

◉ Present in most protocols, including
Ethernet and WiFi, you just can’t see it

◉ Indicates a packet is incoming & helps
determine speed

◉ Usually 10101010 or 01010101, may repeat
multiple times (0xAAAA, 0x5555)

◉ Helps us know we’ve found something;
we’re going to look for this first!

#sf22usDigital Signal Processing

◉ Most of the time decoding a protocol will be
spent doing filters & demodulation

◉ We can pick filter performance as we need:
○ Filter high frequency noise
○ Filter low frequency noise
○ Perform basic averaging
○ Filter amplitude noise, frequency noise, etc

◉ We can explore these w/ cool tools like URH

#sf22usUniversal Radio Hacker

◉ GQRX & friends for finding frequency
◉ URH for capturing & decode
◉ Runs on multiple platforms
◉ Captures directly to a UI for processing

signal, applying filters, and comparing
decoded data

#sf22usRecord a signal

#sf22us

Zooming in – sure looks like
something

#sf22usAuto-parameters

◉ URH is amazing
◉ Select the signal in the graph
◉ Crop to selection
◉ Try an encoding (like FSK)
◉ Click “auto detect”

#sf22usPulling some data

#sf22usLooking at the signal itself

◉ Sure is a still pile of garbage

#sf22usDemod view

◉ URH can demod multiple basic encodings
◉ ASK, OOK, FSK
◉ Flip through them and see if any make the

signal make sense
◉ Most embedded devices use one of these

#sf22usSwitch to ‘demod’ view

◉ Apply the FSK demod and suddenly

#sf22usWhy is this interesting?

◉ Remember manchester encoding?
◉ Down-Up for 1, Up-Down for 0 (or reversed)
◉ Seeing groupings of single and double

transitions is very promising

#sf22usIncreased filtering

◉ Apply a filter right in the URH UI
◉ Suddenly it’s much more clean looking!

#sf22usNow we have bits

◉ Using URH we know the encoding type and
data rates, because we got a preamble out

◉ So we can just read data, right?
◉ Wellll…..

#sf22usOf course it’s not that simple

◉ Additional randomization for TX
◉ Also no reason text is ASCII
◉ No reason data is even 8 bits!
◉ Many protocols are transmitted from tiny

embedded devices
◉ Optimized for other reasons

#sf22usReal-world encoding in ADSB

◉ 13 bit altitude. In feet. Made of
non-contiguous bits.

◉ Also a 12 bit altitude. Non-contiguous bits.
Multiplied by 25. Subtract 1000.

◉ Non-ASCII non-contiguous alphabet
◉ Helps to have external knowledge of the

protocols

#sf22usPractical decoding

◉ So we’ve done some exploring
◉ We have a protocol we know we want
◉ URH can export it, but that’s not really

great for long-term processing
◉ How can we turn this into a tool we can

integrate?

#sf22usGRC

◉ Gnu Radio Companion
◉ Lego modules that let us put together a

decode
◉ Good for deeper exploration, not great for

automatic tools

#sf22usGRC

#sf22usPython

◉ Able to talk to radio drivers
◉ Python + NumPy + SciPy gives us

programmatic manipulations
◉ Trickier to get the speed we need

#sf22usC/C++

◉ Harder to manipulate arbitrary byte streams
◉ Some good libraries for DSP
◉ Can be faster

#sf22usBasic process

◉ We’ll go with Python because it’s the most
readable

◉ NumPy is a high-speed (native processor
speed) processing library we’ll use heavily

◉ Lots of numerical & scientific algos available
◉ 1000 foot view only, still boring, sorry!

#sf22usPythonisms

◉ Python slices and iterates are hugely helpful
here

◉ Array[start:end:step]
◉ Array[::n] skips by N entries; you’ll see us

use this a lot in the examples
◉ Use NumPy whenever possible for speed!

#sf22usBasic steps

◉ Acquire data
◉ Convert IQ
◉ Apply filters
◉ Turn values into bits
◉ Find preamble
◉ Turn bits into our data

#sf22usAcquiring data

◉ Librtlsdr, soapy, etc have APIs
◉ Can also read saved files from other tools
◉ Cython / CFFI lets us talk right to the USB

drivers w/ minimal pain
◉ No matter how we import data, we end up

with an array of interleaved IQ data

#sf22usConverting IQ

◉ Usually we need to convert the IQ imaginary
into real; depends on encoding

◉ Adding the square of I and Q gets us
amplitude

◉ Tricks for speed like precomputed squares

 buf = np.add(self.square_lut[buf[::2]],
self.square_lut[buf[1::2]])

#sf22usAdding squares

buf =
np.add(self.square_lut[buf[::2]],
self.square_lut[buf[1::2]])

Add the square of each I and Q together.
We pre-computed every 8bit square!
Remember Python slices and steps?

#sf22usTurning it into binary

◉ So what does it take to turn an analog signal
into binary?

◉ Lets take a basic on/off (OOK) waveform
◉ Analog data so we’re -128 to +128 (8 bit)
◉ Let’s assume anything > 50% is “on” and <

50% is “off”

#sf22usSignal, in theory

#sf22usExtracting bits by signal level

#sf22usLooks pretty good

◉ That looks pretty good; we get a nice
representation

#sf22usSignal, in reality

#sf22usNow we get garbage

#sf22usBleh

◉ Reality is noisy
◉ Why?
◉ Wrong antenna freq can round edges
◉ Cheap TX HW is often crummy
◉ Other signals can overlap
◉ SDR aliasing

#sf22us

Other signal in the middle of
our packet

#sf22usHey there buddy

#sf22usWildly different signal levels

#sf22usSo what can we do?

◉ We want to turn wobbly fuzzy analog into
more readable trends

◉ We want to ignore noise as best we can
◉ We do this by applying filters
◉ As many filter variants as you can imagine
◉ Welcome to DSP – digital signal processing

#sf22usFiltering data

◉ Many filters to pick from
◉ We’ll look at moving average
◉ Other more advanced filter techniques

available
◉ Links at end for more…

#sf22usSimple as simple

◉ Simplest filter may be running average
◉ Sliding window average using NumPy

cumulative sums:
 def cumsum(data, wndo):
 ret = np.cumsum(data)
 ret[wndo:] = ret[wndo:] - ret[:-wndo]
 return ret[wndo - 1:] / wndo

#sf22usMoving Average

◉ ret = np.cumsum(data)
Adds each element to the previous

 >>> numpy.cumsum([0, 1, 2, 3, 4])
 array([0, 1, 3, 6, 10])

#sf22usMoving Average

◉ ret[wndo:] = ret[wndo:] - ret[:-wndo]

Slice the first and last “window” off the data
(more on windows soon)

#sf22usMoving Average

◉ return ret[wndo - 1:] / wndo

Resample the data by average – dividing by
the number of samples in each window

#sf22us

End result of the moving
average

#sf22usTurning analog into binary

◉ After filtering, converting is simple

 bits = np.where(buffer > 0, 1, 0)

#sf22us

Converting to bits looks a lot
better!

#sf22usDecimating our signal

◉ Decimation: Reducing the # of samples

◉ Yes, I know it’s not 10%

◉ Used to reduce our over-sampling due to Nyquist +
radio sample rates

◉ Right now our signal is stretched by whatever the
multiple of sample rate to symbol rate is

◉ In this code, it’s a multiple of 24

 bits = bits[::self.decimation]

#sf22usFinding the preamble

◉ We need to find our preamble
◉ Either we can do a naïve search for the

preamble as a sliding window…
◉ Or we use some NumPy functions to do

correlation to find likely matches, then do
an exact match

◉ If we find something, we look deeper

#sf22usCorrelation

self.scm_preamble = np.array([1, 0, 1, 0, 1, 0, 1, 0,
1,])

…

corr = np.correlate(buf, self.search_preamble)

return np.argmax(corr)

Search the buffer for something that looks like 10101010
Return the most confident match (highest value)
Likely the start of our packet!

#sf22usStart decoding the packet

◉ We have a stream of bits from the radio
◉ We think we have the start of a packet
◉ Apply the symbol decode (ie, Manchester,

etc)

#sf22usManchester in Python

 def _single_manchester(self, a, b, c, d):

 bit_p = a > b

 bit = c > d

 if bit and ((bit_p and c > b) or (not bit_p and d < b)):

 return 1

 if not bit and ((bit_p and d > b) or (bit_p and c < b)):

 return 0

#sf22usChecksums

◉ Almost every packet has a checksum
◉ Radio transmission is a garbage fire
◉ Hopefully, we know how to validate the

checksum!
◉ Brute force checksum tools online
◉ If you’re feeling spicy, you can try to

auto-correct missing bits and try again

#sf22usProcessing the packet content

◉ We finally have a stream of bytes we think is
our packet

◉ Now we just need to know what goes into
that packet

◉ So that’s fun.
◉ Just remember words may not be 8 bits
◉ Text may not be ASCII

#sf22usExample: Meters

[0 : 21] 21 Sync / RF Preamble 1F2A60

[21 : 23] 2 ID MSB

[23] 1 Reserved

[24 : 26] 2 Physical tamper

[26 : 30] 4 Endpoint type

[30 : 32] 2 Endpoint tamper

[32 : 56] 24 Consumption value

[56 : 80] 24 ID LSB

[80 : 96] 16 Checksum

#sf22usNow what?

◉ Celebrate our victory
◉ Dump the data to somewhere we can use it
◉ If it has a DLT, we can write it to PCAP
◉ Otherwise may need custom decoders
◉ Tools like Kismet can talk arbitrary content
◉ JSON + MQTT?

#sf22usSuper-advanced SDR-foo

◉ FPGA enabled SDR
◉ BladeRF, USRP, some others
◉ If you can implement the full decode in

FPGA, you offload all the work
◉ FPGA still power hungry
◉ Still expensive
◉ Rare skillset

#sf22usFPGA Examples

◉ BladeRF WiPhy
○ Full 802.11n implementation in FPGA
○ Public license!
○ Inject anything with no firmware interference

◉ BladeRF ADSB
○ Parallel packet recovery tries thousands of CRC

permutations

#sf22usTransmission

◉ We haven’t covered transmission at all
◉ “The same, but, backwards.”
◉ You have to synthesize a binary stream that

represents the signal
◉ URH can automate it for things
◉ Beyond today – rtl-sdr can’t TX, and TX may

require licensing, etc

#sf22usS.L.O. – SDR-Like-Objects

◉ Yardstick One
◉ Ubertooth
◉ RFCat
◉ Others

#sf22usFlexible ASICs

◉ Usually built on a TI-CC radio chip
◉ Microcontroller + Radio with multiple

encodings
◉ Usually FSK and PSK and some others
◉ Often found in cheap consumer devices

#sf22usRFCat

◉ RFCat is a python framework for talking to
TI-CC

◉ If your protocol happens to be compatible
with one in the TI-CC suite, you can use the
ASIC

◉ Let it handle the filtering, decode, etc
◉ You just set the attributes and go

#sf22usWhy all this SDR stuff then?

◉ Sometimes you’ll get lucky
◉ Often you won’t
◉ Even if you do, you need to

○ Find the signal
○ Find the encoding
○ Find the data rates

◉ SDR and URH still have a huge role

#sf22usResources!

Universal Radio Hacker (github)
Kismet (github)
SDR with HackRF Series (youtube)
Rtl-sdr.com
Dspguide.com

