SharkFest '24 US

Real-world post-quantum TLS in Wireshark

Tuesday June 18th, 2024

Peter Wu
Wireshark Core Developer
peter@lekensteyn.nl

#sf24us o Fairfax, VA o June 15 - 20

(.‘ About me

» Wireshark contributor since 2013, core developer since 2015.
» Areas of interest: TLS, QUIC, HTTP/3, Lua, security, ...

» Cloudflare Research team. Recently worked on rolling out post-quantum TLS.

-

#sf24us o Fairfax, VA o June 15 - 20

Transport Layer Security (TLS
(.\ p y y (TLS)

» Standard for securing network traffic. Web (HTTP), e-mail, databases, etc.

» Provides secure communication channel between two endpoints (client and server).
» Network protocol with two components:

» Handshake Protocol: exchange capabilities, establish trust and establish keys.
» Record Protocol: carries messages and protects application data fragments.

Application Application

TLS TLS TLS
TCP TCP | TCP TCP
P IP P P
Client Server

#sf24us o Fairfax, VA o June 15 - 20

Post-quantum cryptography (PQC
(.\ q yptography (PQC)

Powerful quantum computers are expected in 15 to 40 years.}

Essentially all Internet traffic today can be decrypted by these.
Post-quantum (PQ) cryptography was designed to be secure against this threat.

vvyyypy

In active development: US National Institute of Standards and Technology (NIST)
is almost done standardizing the initial post-quantum public-key algorithms.

'https://blog.cloudflare. com/post-quantum-for-all/

#sf24us o Fairfax, VA o June 15 - 20

(.\ TLS decryption in Wireshark using the TLS key log file

> Text file with unique per-session secrets?.
» TLS 1.2 format: CLIENT _RANDOM <Client Hello Random> <master secret>
» TLS 1.3 requires four different secrets (handshake and traffic secrets).

CLIENT_RANDOM 607AAA3D657D8A08F1073AE75B62CD284C87BB5504D275631CA86533707FB080 B27567070A3832CA2C072D1D0905647EF364C1E017A33001EDOBB2E
CLIENT_HANDSHAKE_TRAFFIC_SECRET e27a03ae85ae8035b331a1af6089dd1e2f300cce131b03fdb9f07a25f1a10876 B8ac2e7e210e30e8£660048e20d45209935d6a
SERVER_HANDSHAKE_TRAFFIC_SECRET e27a03ae85ae8035b331a1af6089dd1e2f300cce131b03fdb9f07a25£1a10876 21c21£13865944c2c411ed1a7271809834dbe
CLIENT_TRAFFIC_SECRET_0 e27a03ae85ae8035b331a1af6089dd1e2£300cce131b03£db9£f07a25f1a10876 0de57183beff9a8c43994£517fbald79ca374bff53b2a
SERVER_TRAFFIC_SECRET_0 e27a03ae85ae8035b331a1af6089dd1e2£300cce131b03£fdb9£f07a25f1a10876 £26e64d69b8095bbcdcbd04d48f2f9d96aedclabcb463

» Import these secrets to Wireshark: Edit — Preferences, Protocols — TLS,
(Pre)-Master-Secret log filename. Or right-click packet, Protocol Preferences.
» Ensure Protocol Preferences — TCP — Reassemble out-of-order segments is set!

> tshark -otls.keylog_file:keys.txt -r some.pcapng
-otcp.reassemble_out_of_order:TRUE

2File format at https://www.ietf.org/archive/id/draft-ietf-tls-keylogfile-02.html

#sf24us o Fairfax, VA o June 15 - 20

Generate key log file
[st

| 2

>

>

>

Set environment variable SSLKEYLOGFILE before starting Firefox or Chrome.
Programs will append secrets to a file at this location.

Start capture before running the application to capture the whole TLS handshake.
Firefox on Windows, create start-fx.cmd file, without quotes in the set line:
set SSLKEYLOGFILE=C:\Users\User\Desktop\keys.txt

start firefox

Chrome on Windows, create a shortcut with:

chrome --ssl-key-log-file="C:\Users\User\Desktop\keys.txt"
One-liner for Linux and macQS, start Firefox or Chromium with a new profile:
SSLKEYLOGFILE="$PWD/keys.txt" firefox -no-remote -profile /tmp/ff
SSLKEYLOGFILE="$PWD/keys.txt" chromium --user-data-dir=/tmp/cr
For macOS: export SSLKEYLOGFILE="$PWD/keys.txt";

open -na Google\ Chrome --args --user-data-dir=/tmp/cr

curl 7.58.0 built with OpenSSL supports it too. (Not on macOS.)

#sf24us o Fairfax, VA o June 15 - 20

Embed key log file in packet capture file
(.\ y log p %)

» TLS decryption requires pairing capture files with key log files. This makes
switching between different files and file distribution more difficult.

» Solution: embed key log file in a pcapng file. Decryption Secrets Block (DSB).
> editcap --inject-secrets tls,keys.txt in.pcap out-dsb.pcapng
> Replace secrets: editcap --discard-all-secrets --inject-secrets ...

> inject-tls-secrets.py: script to embed a subset of TLS secrets in a pcapng file.3
Example: given keys.txt and some.pcap, create some-dsb.pcapng:
./inject-tls-secrets.py keys.txt some.pcap

» Since Wireshark 4.2: Edit — Inject TLS Secrets.

*https://gist.github.com/Lekensteyn/f64ba6d6d2c6229d6ec444647979ea24

#sf24us o Fairfax, VA o June 15 - 20

‘ Symmetric-key cryptograph
(. y y Cryptograpny

» Symmetric encryption: sender and receiver have the same secret key.

» Authenticated Encryption with Additional Data (AEAD) added in TLS 1.2:
AES-GCM, ChaCha20-Poly1305.

» Legacy (TLS <1.2): combine ciphers such as AES-CBC or RC4 with a Hashed
Message Authentication Code (HMAC): HMAC-SHA256, HMAC-SHAL.

> Modern symmetric encryption is already post-quantum secure.

#sf24us o Fairfax, VA o June 15 - 20

Public-key cryptograph
(.‘ y cryptograpny

» Public-key cryptography: different private and public key. Private
encryption /signing key. Public decryption/verification key.

» Digital signature algorithms: RSA, ECDSA.

> Key agreement or key exchange (KEX): RSA (encrypt premaster secret against
server key), ECDHE (Elliptic Curve Diffie-Hellman with ephemeral keys).

» Classical signature and key agreement algorithms are not PQ-secure.

#sf24us o Fairfax, VA o June 15 - 20

RSA key exchange (TLS 1.2 and older
(.‘ y ge ()

» Client generates random premaster secret and encrypts it using server certificate.
> Server decrypts it using the RSA private key matching the certificate.

> Not forward secret. A single private RSA key file can decrypt all recorded traffic.
» Limitations:

» Requires server admin to provide the key file.

» Requires TLS_RSA_WITH_AES_128_CBC_SHA ciphers, not TLS_ECDHE_. ..
» Does not work with session resumption.

» Does not work with TLS 1.3.

» Example with SSL 3.0 (2006): rsasnakeoil2.pcap and rsasnakeoil2.key.

#sf24us o Fairfax, VA o June 15 - 20

(‘ RSA Keys configuration

»

- Appearance .
A » Not to be confused with

(Pre)-Master-Secret log

pkes11:model=5o0ftHSM%20v2;manufacturer=SoftHSM%20project;serial=b0df0075¢ ﬁ/en ame

Filter Buttons » Accepts PEM-encoded
Name Resolution or PKCS#12 key file.

Protocols

RSA Keys > PKCS+#11 token and

Add new keyfile... | ‘ Add new token... | | Remove key |

Columns
RSA private keys are loaded from a file or PKCS #11 token.
Font and Colors

Jtmp/wireshark/test/keys/rsasnakeoil2 key

Layout
Capture
Expert

~

>~ Statistics
Advanced PKCS #11 provider libraries. H S M su ppOI’t
Jusr/lib/pkes11/p11-kit-client.so » tshark
-ouat:rsa_keys:’ "rsa.key",
‘Add new provider... | | Remove provider ‘ n "o
password
| Help ‘ 0K Cancel

##sf. Fairfax, VA 20

(.‘ (EC)DHE key exchange

v

Client generates new DH keypair, sends public DH key to server.

v

Server generates new DH keypair, sends public DH key to client. Server signs it
using private RSA/ECDSA key matching the certificate.

Each side combines their own private key with the peer public key: shared secret.
Each side throws away their ephemeral DH private key for perfect forward secrecy.
Works with all TLS versions, including TLS 1.3. Example: tls12-dsb.pcapng

vvyyypy

Diffie-Hellman key exchange and RSA/ECDSA signatures are not PQ-secure.

#sf24us o Fairfax, VA o June 15 - 20

(‘ Rough comparison of classical and post-quantum signature algorithms (‘
& . - - &

_ Size (bytes) CPU time (lower is better)

PQ | Public key Signature Signing Verification
Ed25519 X
RSA-2048 X
Dilithium2
Falcon512
SPHINCS*128s
SPHINCS*128f

Source: https://blog.cloudflare.com/nist-post-quantum-surprise/ (2022) 13

#sf24us o Fairfax, VA o June 15 - 20

(‘ Key agreement: post-qu classical DH

»

Key Encapsulation Mechanism (KEM) Diffie-Hellman (DH)
[~ ——] [——]
[——] [——]
Client Server Client Server
1 1

for Private key for Private key 1

— ¢ — Generate keypai
and Public key Public key and Public key 1 Public key 1 __ enerate keypair

Generate keypair | Generate keypair I
for Private key 2

% and Public key 2
Combine (Public key 1,
Encapsulate (Public key) Private Key 2)
to get Shared key, Ciphertext to getShared key
— Q
Ciphertext o)
—
Public key 2
Decapsulate
(Ciphertext, Private key) Combine

toget Shared key (Public key 2, Private key 1)

to get Shared key

O» &— ApplicationData —) 057

Encrypted with
Shared key

O» &— Application Data —> 05'

Encrypted with
Shared key 14

#sf24us o Fairfax, VA o June 15 - 20

(‘ Post-quantum key agreement
& o

» Hybrid key agreement: Combine shared secrets from classic ECDHE (X25519) and
post-quantum Kyber768 draft version.

> At least as secure as current X25519 deployments.

» Kyber is the basis for the future NIST FIPS 203 standard, Module-Lattice-Based
Key-Encapsulation Mechanism (ML-KEM)#.

“Initial Public Draft: https://csrc.nist.gov/pubs/fips/203/ipd (2023)

#sf24us o Fairfax, VA o June 15 - 20

(.‘ Rough comparison of classical ECDHE and post-quantum KEM

Public key size CPU time

Group name Client Server | Client Server
ECDHE: X25519 32 1 (baseline)
ECDHE: NIST P-256 65 3.25
ECDHE: NIST P-384 97 50.4
ECDHE: NIST P-521 133 116.7
PQ: Kyber768 1184 1088 | 5.53 3.53
Hybrid: X25519Kyber768Draft00 | 1216 1120 | 6.53 4.53

» Lower CPU time is better.

» Note: optimized Kyber768 versions are even faster than P-256.

#sf24us o Fairfax, VA o June 15 - 20

(.‘ TLS Group identifiers in Key Share and Supported Groups extensions

Public key size

Group name Group ID Client Server
X25519 29, 0x001d 32
NIST P-256 23, 0x0017 65
NIST P-384 24, 0x0018 97
NIST P-521 25, 0x0019 133

X25519Kyber768Draft00 25497, 0x6399 1216 1120

- Extension: key_share (len=1263) X25519Kyber768Drafte00, x25519
Type: key_share (51)
Length: 1263
- Key Share extension
Client Key Share Length: 1261

» Key Share Entry: Group: Reserved (GREASE), Key Exchange length: 1

- Key Share Entry: Group: X25519Kyber768Draft@0, Key Exchange length: 1216
Group: X25519Kyber768Draft@0 (25497)
Key Exchange Length: 1216
Key Exchange: 91299366af91cdb945067ccd9ee60bdae028af3fc8dc7bea823930946:

» Key Share Entry: Group: x25519, Key Exchange length: 32

#sf24us o Fairfax, VA o June 15 - 20

(.‘ Real-world example: Google Chrome and Firefox versus Cloudflare (\

» Servers:

» Cloudflare enabled PQ KEX in 2022 (about 20% Internet), see
https://pq.cloudflareresearch.com or try https://wireshark.org
» Google enabled support server-side in 2023.

» Clients:

» Google Chrome 124 (April 2024): enabled by default. See TLS 1.3 hybridized Kyber
support at chrome://flags/#enable-tls13-kyber.

> Mozilla Firefox 124 (March 2024): set security.tls.enable_kyber to true via
about:config. For QUIC, network.http.http3.enable_kyber (FF 128).

> https://lekensteyn.nl/files/captures/chromiuml19-dsb.pcapng
> https://lekensteyn.nl/files/captures/firefox127-pq-dsb.pcapng

#sf24us o Fairfax, VA o June 15 - 20

(.‘ What to look for

» Locate Client and Server Hello messages: tls.handshake.type in {1, 2}
» For PQ KEX, both client and server TLS extensions must have:

» Supported Versions with TLS 1.3.
» Supported Groups with X25519Kyber768Draft00 (25497).
» Key Shares with X25519Kyber768Draft00.

QUIC: runs over UDP instead of TCP. Uses TLS 1.3 for security.

Match TLS Server Name with: t1s.handshake.extensions_server_name

vy

» Use stream index for linking packets via Custom column:
> tcp.stream or quic.connection.number or udp.stream

» Use Ctrl + , and Ctrl + . to move to the previous/next packet in a conversation.

#sf24us o Fairfax, VA o June 15 - 20

Common problems during PQ deployment
(.‘ p g ploy

» Client or server were not properly configured with PQ support.

» TLS 1.3 is not enabled or TLS 1.2 or older is forced.

> The wrong server software was targeted by the client.

» An intercepting TLS middlebox was in use that did not support PQ.

» Bug in servers causing TCP resets for large Client Hello: https://tldr.fail/
» Bug in Rustls servers with Hello Retry Request.

#sf24us o Fairfax, VA o June 15 - 20

(.‘ Problem: Maximum Transmission Unit (MTU) issues

» Maximum Transmission Unit (MTU): typically 1500 for Ethernet. Can be lower
due to tunneling/VPN overhead.
» Client connects, but during the TLS handshake times out waiting for the server.
» Client capture shows that the TCP handshake succeeds, but
» Case 1: TLS Client Hello is sent, but never ACKed.
» Case 2: TLS Server Hello is partially returned.> Check TCP sequence numbers.

» Solution: reduce MTU or apply TCP Maximum Segment Size (MSS) clamping.

*https://lekensteyn.nl/files/captures/tls-server-mtu-issue.pcap

#sf24us o Fairfax, VA o June 15 - 20

(.‘ Problem: non-compliant Hello Retry Request (HRR) handling

v

If a TLS 1.3 server prefers a different key exchange group, it can send a Hello
Retry Request (HRR).

Client receives a TLS alert (lllegal Parameter) during the TLS handshake.
Affects servers written in the Rust programming language using rustls.®
Fixed in rustls 0.20.9 and 0.21.7 (August 2023).

Servers must copy client Session ID into HRR to simulate TLS 1.2 session
resumption for middlebox compatibility mode.

vvyyypy

v

https://lekensteyn.nl/files/captures/time-hrr-rustls-bug.pcapng

https://github.com/rustls/rustls/issues/1424

#sf24us o Fairfax, VA o June 15 - 20

Cloudflare requests to origin servers supports PQ.”

It can directly send the PQ key share (“preferred mode”).
Or advertise PQ support, but initially send X25519 (“supported mode”).

The latter can trigger a Hello Retry Request to ask the client to retry with the PQ
key share. Adds one extra roundtrip.

> https://lekensteyn.nl/files/captures/pq-origin-dsb.pcapng

"https://blog.cloudflare.com/post-quantum-to-origins/

#sf24us o Fairfax, VA o June 15 - 20

(\ Active interception as alternative
L 4

» Previous methods were passive, they preserve the client-server behavior.

» Decryption without modifying workstations or smartphones requires active
interception, an man-in-the-middle (MITM) attack.

» Caveat: active interception can affect the investigation. Different TLS parameters
can be negotiated, TLS Client Authentication (mutual TLS) breaks, HTTP
headers can change, certificate pinning result in new failures.

» Client talk to a proxy server which terminates TLS. The proxy starts a new TLS
connection with the original server and forwards re-encrypted traffic.

» Typically a custom Root Certificate Authority (CA) certificate is installed on
clients. Middlebox uses the corresponding CA private key to generate new
certificates on-the-fly and serve these to clients.

» See https://mitmproxy.org/. Supports SSLKEYLOGFILE too!

#sf24us o Fairfax, VA o June 15 - 20

(.\ Conclusion

Post-quantum cryptography is here to protect data in the future.
Use a key log file to enable TLS decryption in Wireshark.

Embed these secrets in a pcapng file for easier distribution.

Use the latest Wireshark version for the best results.

See current PQ adoption on Cloudflare Radar and
https://pq.cloudflareresearch.com

For a more detailed background and key extraction from other applications, see
https://lekensteyn.nl/files/wireshark-ssl-tls-decryption-secrets-sharkfest18eu.pdf

vVvyvyvVvyy

v

& peter@lekensteyn.nl
&} lekensteyn.nl
@ OLekensteyn@infosec.exchange

¥ QLekensteyn

#sf24us o Fairfax, VA o June 15 - 20

