
1

SharkFest ’24 US

Real-world post-quantum TLS in Wireshark
Tuesday June 18th, 2024

Peter Wu
Wireshark Core Developer

peter@lekensteyn.nl

#sf24us • Fairfax, VA • June 15 - 20

2

About me

▶ Wireshark contributor since 2013, core developer since 2015.
▶ Areas of interest: TLS, QUIC, HTTP/3, Lua, security, . . .
▶ Cloudflare Research team. Recently worked on rolling out post-quantum TLS.

#sf24us • Fairfax, VA • June 15 - 20

3

Transport Layer Security (TLS)

▶ Standard for securing network traffic. Web (HTTP), e-mail, databases, etc.
▶ Provides secure communication channel between two endpoints (client and server).
▶ Network protocol with two components:

▶ Handshake Protocol: exchange capabilities, establish trust and establish keys.
▶ Record Protocol: carries messages and protects application data fragments.

IP
TCP
TLS

Application

. . .
Client

TLS
TCP
IP
. . .

TCP
IP
. . .

IP
TCP
TLS

Application

. . .
Server

#sf24us • Fairfax, VA • June 15 - 20

4

Post-quantum cryptography (PQC)

▶ Powerful quantum computers are expected in 15 to 40 years.1

▶ Essentially all Internet traffic today can be decrypted by these.
▶ Post-quantum (PQ) cryptography was designed to be secure against this threat.
▶ In active development: US National Institute of Standards and Technology (NIST)

is almost done standardizing the initial post-quantum public-key algorithms.

1https://blog.cloudflare.com/post-quantum-for-all/
#sf24us • Fairfax, VA • June 15 - 20

5

TLS decryption in Wireshark using the TLS key log file

▶ Text file with unique per-session secrets2.
▶ TLS 1.2 format: CLIENT_RANDOM <Client Hello Random> <master secret>
▶ TLS 1.3 requires four different secrets (handshake and traffic secrets).

CLIENT_RANDOM 607AAA3D657D8A08F1073AE75B62CD284C87BB5504D275631CA86533707FB080 B27567070A3832CA2C072D1D0905647EF364C1E017A33001ED0BB2E4A08654F59FD2C8758042E583A503DDC4012007D8
CLIENT_HANDSHAKE_TRAFFIC_SECRET e27a03ae85ae8035b331a1af6089dd1e2f300cce131b03fdb9f07a25f1a10876 8ac2e7e210e30e8f660048e20d45209935d6a2d9a412329534d8742b2357006b
SERVER_HANDSHAKE_TRAFFIC_SECRET e27a03ae85ae8035b331a1af6089dd1e2f300cce131b03fdb9f07a25f1a10876 21c21f13865944c2c411ed1a7271809834dbe618b35b3a9a188ebba50367988e
CLIENT_TRAFFIC_SECRET_0 e27a03ae85ae8035b331a1af6089dd1e2f300cce131b03fdb9f07a25f1a10876 0de57183beff9a8c43994f517fba1d79ca374bff53b2a2d1aac3070ff02e87d1
SERVER_TRAFFIC_SECRET_0 e27a03ae85ae8035b331a1af6089dd1e2f300cce131b03fdb9f07a25f1a10876 f26e64d69b8095bbcdcbd04d48f2f9d96aedc1abc6463a422f368ef25bf33b2f

▶ Import these secrets to Wireshark: Edit → Preferences, Protocols → TLS,
(Pre)-Master-Secret log filename. Or right-click packet, Protocol Preferences.

▶ Ensure Protocol Preferences → TCP → Reassemble out-of-order segments is set!
▶ tshark -otls.keylog_file:keys.txt -r some.pcapng

-otcp.reassemble_out_of_order:TRUE

2File format at https://www.ietf.org/archive/id/draft-ietf-tls-keylogfile-02.html
#sf24us • Fairfax, VA • June 15 - 20

6

Generate key log file

▶ Set environment variable SSLKEYLOGFILE before starting Firefox or Chrome.
Programs will append secrets to a file at this location.

▶ Start capture before running the application to capture the whole TLS handshake.
▶ Firefox on Windows, create start-fx.cmd file, without quotes in the set line:

set SSLKEYLOGFILE=C:\Users\User\Desktop\keys.txt
start firefox

▶ Chrome on Windows, create a shortcut with:
chrome --ssl-key-log-file="C:\Users\User\Desktop\keys.txt"

▶ One-liner for Linux and macOS, start Firefox or Chromium with a new profile:
SSLKEYLOGFILE="$PWD/keys.txt" firefox -no-remote -profile /tmp/ff
SSLKEYLOGFILE="$PWD/keys.txt" chromium --user-data-dir=/tmp/cr

▶ For macOS: export SSLKEYLOGFILE="$PWD/keys.txt";
open -na Google\ Chrome --args --user-data-dir=/tmp/cr

▶ curl 7.58.0 built with OpenSSL supports it too. (Not on macOS.)
#sf24us • Fairfax, VA • June 15 - 20

7

Embed key log file in packet capture file

▶ TLS decryption requires pairing capture files with key log files. This makes
switching between different files and file distribution more difficult.

▶ Solution: embed key log file in a pcapng file. Decryption Secrets Block (DSB).
▶ editcap --inject-secrets tls,keys.txt in.pcap out-dsb.pcapng
▶ Replace secrets: editcap --discard-all-secrets --inject-secrets ...
▶ inject-tls-secrets.py: script to embed a subset of TLS secrets in a pcapng file.3

Example: given keys.txt and some.pcap, create some-dsb.pcapng:
./inject-tls-secrets.py keys.txt some.pcap

▶ Since Wireshark 4.2: Edit → Inject TLS Secrets.

3https://gist.github.com/Lekensteyn/f64ba6d6d2c6229d6ec444647979ea24
#sf24us • Fairfax, VA • June 15 - 20

8

Symmetric-key cryptography

▶ Symmetric encryption: sender and receiver have the same secret key.
▶ Authenticated Encryption with Additional Data (AEAD) added in TLS 1.2:

AES-GCM, ChaCha20-Poly1305.
▶ Legacy (TLS ≤1.2): combine ciphers such as AES-CBC or RC4 with a Hashed

Message Authentication Code (HMAC): HMAC-SHA256, HMAC-SHA1.
▶ Modern symmetric encryption is already post-quantum secure.

#sf24us • Fairfax, VA • June 15 - 20

9

Public-key cryptography

▶ Public-key cryptography: different private and public key. Private
encryption/signing key. Public decryption/verification key.

▶ Digital signature algorithms: RSA, ECDSA.
▶ Key agreement or key exchange (KEX): RSA (encrypt premaster secret against

server key), ECDHE (Elliptic Curve Diffie-Hellman with ephemeral keys).
▶ Classical signature and key agreement algorithms are not PQ-secure.

#sf24us • Fairfax, VA • June 15 - 20

10

RSA key exchange (TLS 1.2 and older)

▶ Client generates random premaster secret and encrypts it using server certificate.
▶ Server decrypts it using the RSA private key matching the certificate.
▶ Not forward secret. A single private RSA key file can decrypt all recorded traffic.
▶ Limitations:

▶ Requires server admin to provide the key file.
▶ Requires TLS_RSA_WITH_AES_128_CBC_SHA ciphers, not TLS_ECDHE_. . .
▶ Does not work with session resumption.
▶ Does not work with TLS 1.3.

▶ Example with SSL 3.0 (2006): rsasnakeoil2.pcap and rsasnakeoil2.key.

#sf24us • Fairfax, VA • June 15 - 20

11

RSA Keys configuration

▶ Not to be confused with
(Pre)-Master-Secret log
filename.

▶ Accepts PEM-encoded
or PKCS#12 key file.

▶ PKCS#11 token and
HSM support.

▶ tshark
-ouat:rsa_keys:’"rsa.key",
"password"’

#sf24us • Fairfax, VA • June 15 - 20

12

(EC)DHE key exchange

▶ Client generates new DH keypair, sends public DH key to server.
▶ Server generates new DH keypair, sends public DH key to client. Server signs it

using private RSA/ECDSA key matching the certificate.
▶ Each side combines their own private key with the peer public key: shared secret.
▶ Each side throws away their ephemeral DH private key for perfect forward secrecy.
▶ Works with all TLS versions, including TLS 1.3. Example: tls12-dsb.pcapng
▶ Diffie-Hellman key exchange and RSA/ECDSA signatures are not PQ-secure.

#sf24us • Fairfax, VA • June 15 - 20

13

Rough comparison of classical and post-quantum signature algorithms

Source: https://blog.cloudflare.com/nist-post-quantum-surprise/ (2022)
#sf24us • Fairfax, VA • June 15 - 20

14

Key agreement: post-quantum KEM vs classical DH

#sf24us • Fairfax, VA • June 15 - 20

15

Post-quantum key agreement

▶ Hybrid key agreement: Combine shared secrets from classic ECDHE (X25519) and
post-quantum Kyber768 draft version.

▶ At least as secure as current X25519 deployments.
▶ Kyber is the basis for the future NIST FIPS 203 standard, Module-Lattice-Based

Key-Encapsulation Mechanism (ML-KEM)4.

4Initial Public Draft: https://csrc.nist.gov/pubs/fips/203/ipd (2023)
#sf24us • Fairfax, VA • June 15 - 20

16

Rough comparison of classical ECDHE and post-quantum KEM

Public key size CPU time
Group name Client Server Client Server
ECDHE: X25519 32 1 (baseline)
ECDHE: NIST P-256 65 3.25
ECDHE: NIST P-384 97 50.4
ECDHE: NIST P-521 133 116.7
PQ: Kyber768 1184 1088 5.53 3.53
Hybrid: X25519Kyber768Draft00 1216 1120 6.53 4.53

▶ Lower CPU time is better.
▶ Note: optimized Kyber768 versions are even faster than P-256.

#sf24us • Fairfax, VA • June 15 - 20

17

TLS Group identifiers in Key Share and Supported Groups extensions

Public key size
Group name Group ID Client Server
X25519 29, 0x001d 32
NIST P-256 23, 0x0017 65
NIST P-384 24, 0x0018 97
NIST P-521 25, 0x0019 133
X25519Kyber768Draft00 25497, 0x6399 1216 1120

#sf24us • Fairfax, VA • June 15 - 20

18

Real-world example: Google Chrome and Firefox versus Cloudflare

▶ Servers:
▶ Cloudflare enabled PQ KEX in 2022 (about 20% Internet), see

https://pq.cloudflareresearch.com or try https://wireshark.org
▶ Google enabled support server-side in 2023.

▶ Clients:
▶ Google Chrome 124 (April 2024): enabled by default. See TLS 1.3 hybridized Kyber

support at chrome://flags/#enable-tls13-kyber.
▶ Mozilla Firefox 124 (March 2024): set security.tls.enable_kyber to true via

about:config. For QUIC, network.http.http3.enable_kyber (FF 128).
▶ https://lekensteyn.nl/files/captures/chromium119-dsb.pcapng
▶ https://lekensteyn.nl/files/captures/firefox127-pq-dsb.pcapng

#sf24us • Fairfax, VA • June 15 - 20

19

What to look for

▶ Locate Client and Server Hello messages: tls.handshake.type in {1, 2}
▶ For PQ KEX, both client and server TLS extensions must have:

▶ Supported Versions with TLS 1.3.
▶ Supported Groups with X25519Kyber768Draft00 (25497).
▶ Key Shares with X25519Kyber768Draft00.

▶ QUIC: runs over UDP instead of TCP. Uses TLS 1.3 for security.
▶ Match TLS Server Name with: tls.handshake.extensions_server_name
▶ Use stream index for linking packets via Custom column:

▶ tcp.stream or quic.connection.number or udp.stream

▶ Use Ctrl + , and Ctrl + . to move to the previous/next packet in a conversation.

#sf24us • Fairfax, VA • June 15 - 20

20

Common problems during PQ deployment

▶ Client or server were not properly configured with PQ support.
▶ TLS 1.3 is not enabled or TLS 1.2 or older is forced.
▶ The wrong server software was targeted by the client.
▶ An intercepting TLS middlebox was in use that did not support PQ.
▶ Bug in servers causing TCP resets for large Client Hello: https://tldr.fail/
▶ Bug in Rustls servers with Hello Retry Request.

#sf24us • Fairfax, VA • June 15 - 20

21

Problem: Maximum Transmission Unit (MTU) issues

▶ Maximum Transmission Unit (MTU): typically 1500 for Ethernet. Can be lower
due to tunneling/VPN overhead.

▶ Client connects, but during the TLS handshake times out waiting for the server.
▶ Client capture shows that the TCP handshake succeeds, but

▶ Case 1: TLS Client Hello is sent, but never ACKed.
▶ Case 2: TLS Server Hello is partially returned.5 Check TCP sequence numbers.

▶ Solution: reduce MTU or apply TCP Maximum Segment Size (MSS) clamping.

5https://lekensteyn.nl/files/captures/tls-server-mtu-issue.pcap
#sf24us • Fairfax, VA • June 15 - 20

22

Problem: non-compliant Hello Retry Request (HRR) handling

▶ If a TLS 1.3 server prefers a different key exchange group, it can send a Hello
Retry Request (HRR).

▶ Client receives a TLS alert (Illegal Parameter) during the TLS handshake.
▶ Affects servers written in the Rust programming language using rustls.6

▶ Fixed in rustls 0.20.9 and 0.21.7 (August 2023).
▶ Servers must copy client Session ID into HRR to simulate TLS 1.2 session

resumption for middlebox compatibility mode.
▶ https://lekensteyn.nl/files/captures/time-hrr-rustls-bug.pcapng

6https://github.com/rustls/rustls/issues/1424
#sf24us • Fairfax, VA • June 15 - 20

23

Using Hello Retry Request to try another key exchange algorithm

▶ Cloudflare requests to origin servers supports PQ.7

▶ It can directly send the PQ key share (“preferred mode”).
▶ Or advertise PQ support, but initially send X25519 (“supported mode”).
▶ The latter can trigger a Hello Retry Request to ask the client to retry with the PQ

key share. Adds one extra roundtrip.
▶ https://lekensteyn.nl/files/captures/pq-origin-dsb.pcapng

7https://blog.cloudflare.com/post-quantum-to-origins/
#sf24us • Fairfax, VA • June 15 - 20

24

Active interception as alternative

▶ Previous methods were passive, they preserve the client-server behavior.
▶ Decryption without modifying workstations or smartphones requires active

interception, an man-in-the-middle (MITM) attack.
▶ Caveat: active interception can affect the investigation. Different TLS parameters

can be negotiated, TLS Client Authentication (mutual TLS) breaks, HTTP
headers can change, certificate pinning result in new failures.

▶ Client talk to a proxy server which terminates TLS. The proxy starts a new TLS
connection with the original server and forwards re-encrypted traffic.

▶ Typically a custom Root Certificate Authority (CA) certificate is installed on
clients. Middlebox uses the corresponding CA private key to generate new
certificates on-the-fly and serve these to clients.

▶ See https://mitmproxy.org/. Supports SSLKEYLOGFILE too!

#sf24us • Fairfax, VA • June 15 - 20

25

Conclusion

▶ Post-quantum cryptography is here to protect data in the future.
▶ Use a key log file to enable TLS decryption in Wireshark.
▶ Embed these secrets in a pcapng file for easier distribution.
▶ Use the latest Wireshark version for the best results.
▶ See current PQ adoption on Cloudflare Radar and

https://pq.cloudflareresearch.com
▶ For a more detailed background and key extraction from other applications, see

https://lekensteyn.nl/files/wireshark-ssl-tls-decryption-secrets-sharkfest18eu.pdf

peter@lekensteyn.nl
� lekensteyn.nl

ø @Lekensteyn@infosec.exchange
� @Lekensteyn

#sf24us • Fairfax, VA • June 15 - 20

