
#sf25us

Sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip

Megumi Takeshita

Packet Otaku,

ikeriri network service

Chase the latency

look for the root cause of the

latency problems

#sf25us

Megumi Takeshita, Packet Otaku, ikeriri network service

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 2

• Worked SE/IS at BayNetwork, Nortel

• Reseller of CACE technologies in 2008

• Founder, ikeriri network service co., ltd

Reseller of packet capture / wireless-tools

• Wrote 10+ books about Wireshark in Japanese

• Instruct Wireshark to JSDF etc.

• Lecturer of CHUO University

• One of the contributors to Wireshark

Translate Wireshark into Japanese

#sf25us

Session Overview

End users and application teams complain to you

about the latency, but we want to prove it is not

network. How about that? The latency lies

everywhere, not only in the network round-trip time.

In this session, you can learn how to divide latency

properly between the client OS/apps, the server

OS/apps and the network side. Including

reasonable ways to debug the latency problems. We

can find the root cause of the latency with TCP/UDP

analysis TIPS and tricks using Wireshark.

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 3

#sf25us

STEP1 Wireshark generated fields calculate the latency

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 4

● Let’s start with a simple web access trace file.

Open http.pcapng in your Wireshark

● Wireshark calculates response time

• DNS request/reply

• TCP SYN/SYN-ACK

• TCP Segment/ACK

• HTTP request/reply

etc.

#sf25us

STEP1 Wireshark generated fields calculate the latency

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 5

● Check #4 and open DNS dissector,

We can see the Wireshark generated field

[Time: 0.060077000 seconds]

dns.time The time between the Query

and the Response.
The time means the

latency between DNS

client, OS resolver, and

DNS server including network

when we capture at a remote

client side

#sf25us

STEP1 Wireshark generated fields calculate the latency

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 6

● Check #6 and open TCP dissector,

open Wireshark generated header,

[SEQ/ACK analysis], we can find iRTT

[iRTT: 0.136903000 seconds]

tcp.analysis.initial_rtt

means the latency between

SYN and SYN-ACK segments

including RTT when we

capture at a client side

#sf25us

STEP1 Wireshark generated fields calculate the latency

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 7

● Check #7 and open TCP dissector,

open Wireshark generated header,

[SEQ/ACK analysis], we can find ack_rtt

[The RTT to ACK the segment was: 0.000166000

tcp.analysis.ack_rtt

means the latency between

the segment and related

ACK (this packet)

#sf25us

STEP1 Wireshark generated fields calculate the latency

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 8

● Check #9 and open the HTTP dissector,

open Wireshark generated field,

[Time since request: 0.071914000 seconds]

http.time (Time since the request was sent)

http.time means the latency

between HTTP request

and HTTP response,

including RTT when we

capture at a client side.

#sf25us

STEP1 Wireshark generated fields calculate the latency

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 9

● Create the table and write out the latencies

Field name Value (seconds) Description Meaning

dns.time 0.060077000 The time between the Query

and the Response.

The latency between the DNS client and

the DNS server, including RTT, when we

capture at the client side

tcp.analysis.i

nitial_rtt

0.13690300

highest

The time between SYN and

SYN-ACK at the initial phase

of 3way handshake

The latency between SYN and SYN-ACK

segments, including network, when we

capture at the client side

tcp.analysis.

ack_rtt

0.000166000 The time between TCP

segment and the related

ACK

The latency between the segment and

the related ACK (

sometimes RTT is not included)

http.time 0.071914000 The time between HTTP

request and HTTP response.

The latency between the HTTP request

and the response, including network,

when we capture at the client side.

#sf25us

STEP1 Wireshark generated fields calculate the latency

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 10

● Divide the source of the delays.

In this trace, tcp.analysis.initial_rtt is the highest,

Server OS initial socket processing time and RTT use

the most time, and HTTP response time is higher

than DNS.

Field name Value

(seconds)

network Client

OS

Client

App

Server

OS

Server

App

Meaning

dns.time 0.060077000 Yes No No Yes Yes DNS latency + network

tcp.analysis.

initial_rtt

0.13690300 Yes No No Yes No Server OS’s initial socket

processing time + RTT

tcp.analysis.

ack_rtt

0.000166000 No Yes No No No Client OS’s socket

processing time

http.time 0.071914000 Yes No No Yes Yes HTTP latency + network

#sf25us

STEP2 Extend Wireshark fields by Post Dissector

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 11

● How about ARP? Check #2 ARP response

There is no field about ARP latency.

We can see the latency from Frame dissector

[Time delta from previous displayed frame]

frame.time_delta_displayed field

How can we do this?

Extend your Wireshark

Create Wireshark Post

Dissector by Lua

#sf25us

STEP2 Extend Wireshark fields by Post Dissector

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 12

● We can add Post Dissector to extend the current

dissection, add additional protocols and fields.

● Dissectors are used for analyzing new protocols,

but Post Dissectors are used for additional

processing after Wireshark finishes dissections.

Install Visual Studio Code and

Lua Extensions

Help>About Wireshark>Folder

Check Personal Lua Plugins
C:\Users\username\AppData\Roaming\Wireshark\plugins

#sf25us

STEP2 Extend Wireshark fields by Post Dissector

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 13

● We can refer Wireshark Developer Guide.

● Define Post Dissector ARP Latency (arp_latency)

● Define a field Time (arp_latency.time) as double

● Add Time field into ARP Latency dissecotor.

#sf25us

STEP2 Extend Wireshark fields by Post Dissector

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 14

● Get fields from current ARP, Frame dissectors.

(These variables are used for response time

calculation in Post Dissector)

● Create tables arp_requests for saving results

#sf25us

STEP2 Extend Wireshark fields by Post Dissector

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 15

● Get fields and input into local variables

● Check the packet is ARP to check there are fields,

opecode_val (arp.opcode), src (ip.src), dst (ip.dst),

and t ((string) frame.time_epoch)

#sf25us

STEP2 Extend Wireshark fields by Post Dissector

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 16

● If ARP request, save epoch time and frame number

with the key(ip.dst_ip.src), else if ARP response,

save and calculate time and add header, field

#sf25us

STEP2 Extend Wireshark fields by Post Dissector

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 17

● Add this dissector as PostDissector

● Copy arp_latency.lua into your personal lua plugins

C:\Users\username\AppData

\Roaming\Wireshark\plugins

#sf25us

STEP2 Extend Wireshark fields by Post Dissector

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 18

● Close Wireshark and open http.pcapng again

reload trace and check #2 packet detail pane

PostDissector adds

ARP Latency header

and Time field

0.000411033630371

094 seconds

We can filter with

arp_latency.time

#sf25us

STEP2 Extend Wireshark fields by Post Dissector

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 19

● Think about the meaning of ARP latency.

(Note: this trace is captured at the client side)

● This latency is caused by layer 2, between

ClientNIC and default GWs (Router’s) interface.

Field name Value

(seconds)

network Client

OS

Client

App

Server

OS

Server

App

Meaning

arp_latency.time 0.000411033 Yes

(LAN)

No

(NIC)

No No

(GW)

No ARP response time is Layer 2

latency between Client NIC

and default GW’s NIC(Router)

Field name Value (seconds) Description Meaning

arp_latency.time 0.000411033 The time between the

ARP request and the ARP
response

Client NIC set target IP address (Default GW’s IP) into ARP header,

sends ARP request with broadcast, Default GW(usually Router) sends
back ARP response with GW’s MAC address by unicast

#sf25us

STEP3 Dividing TCP connection‘s latency at the client side

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 20

● Choose View>Time Display Format,

“Seconds Since Previous Displayed Packet”

● Choose Statistics>Flow Graph, select “TCP Flows”

from the flow type list box, show TCP Flow Graph.

Let’s divide TCP latency

the interval between..

1:SYN<>SYN/ACK

2:SYN/ACK<>ACK

3:ACK<>First segment

4:First segment<>ACK

#sf25us

STEP3 Dividing TCP connection‘s latency at the client side

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 21

● Note: This trace was captured at the client side.

What factor causes the time of this latency?

Network, ClientOS, ClientApps(web browser),

ServerOS or ServerApps(web server)

Interval of TCP segments Value (seconds) Meaning

SYN<>SYN/ACK 0.136737 The client sends a SYN packet, and then the Server receives a SYN packet via

the network. ServerOS creates the Socket, assigns the CPU and memory, and
sends back a SYN/ACK with the initial sequence number and ack number.

SYN/ACK<>ACK 0.000166 ClientOS receive SYN/ACK and sets the ack number with the Server’s initial

sequence number +1, and creates and sends an ACK

ACK<>First segment
ACK<>PSH,ACK Len:262

0.000308 ClientApps(web browser) receives the socket from ClientOS, creates and sets the

value into Application data(HTTP request), and sends data using the socket API.

First segment<>ACK
PSH,ACK Len:262 <>

FIN,PSH,ACK Len:97

0.071914 ServerOS receives the First segment from the Client via the network, adds the

ACK number by the segment size, sends the data to the ServerApps (web server)
when the PSH flag is set. ServerApps create the response message and
ServerOS set FIN/PSH/ACK flag and sends the segment via network

#sf25us

STEP3 Dividing TCP connection‘s latency at the client side

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 22

● Create table and divide the cause of latency

Interval of TCP segments Value

(seconds)

network Client

OS

Client

App

Server

OS

Server

App

Meaning

SYN<>SYN/ACK 0.136737 Yes No No Yes No Server OS initial socket

processing time + network

SYN/ACK<>ACK 0.000166 No Yes No No No Client OS socket processing

time

ACK<>First segment
ACK<>PSH,ACK Len:262

0.000308 No No Yes No No Client App (browser)

request creation time

First segment<>ACK
PSH,ACK Len:262 <>
FIN,PSH,ACK Len:97

0.071914 Yes No No Yes Yes Network + ServerOS socket

processing + ServerApps

Server OS initial socket processing + network

are the highest latencies in this client-side trace,

#sf25us

STEP1-3 Write up all delay into one table

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 23

Field name

Interval of TCP segs

Value

(seconds)

network Client

OS

Client

App

Server

OS

Server

App

Meaning

arp_latency.time 0.000411033 Yes

(LAN)

No

(NIC)

No No

(GW)

No Layer 2 latency between

Client NIC and default GW

dns.time 0.060077000 Yes No No Yes Yes DNS latency + network

SYN<>SYN/ACK 0.136737 Yes No No Yes No Server OS initial socket

processing time + network

SYN/ACK<>ACK 0.000166 No Yes No No No Client OS socket processing

time

ACK<>First Segment
ACK<>PSH,ACK Len:262

0.000308 No No Yes No No Client App (browser) request

creation time

First segment<>ACK

PSH,ACK Len:262 <>
FIN,PSH,ACK Len:97

0.071914 Yes No No Yes Yes Network + ServerOS socket

processing + ServerApps

http.time 0.071914000 Yes No No Yes Yes HTTP latency + network

Server OS initial socket processing latency is the highest

#sf25us

STEP4 Compare another trace file

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 24

● When troubleshooting the root cause of

latency, compare two trace files with different

settings, conditions, and environments.

● Open http2.pcapng, an HTTP web access trace

with different websites, client/server and

environment (IEEE802.11b 5ch wireless trace)

#sf25us

STEP4 Compare another trace file

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 25

• This trace contains different Layer 2 headers,

another client/server, and a website.

For example,

wired trace(http1)

contains EthernetII,

wireless trace

(http2) contains

Radiotap, 802.11

radio information,

IEEE802.11 data

and LLC header

#sf25us

STEP4 Compare another trace file

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 26

• By comparing two different trace files, we can

understand the another aspects of the latency

Full Duplex 100BASE-TX wired EthernetII is about 10

times faster than half duplex IEEE802.11b wireless.

Trace file arp_latency.time

(seconds)

network Client

OS

Client

App

Server

OS

Server

App

Meaning

http.pcapng 0.000411033 Yes

(LAN)

No

(NIC)

No No

(GW)

No ARP response time is Layer 2

latency between the Client

(Wired) NIC and default GW

http2.pcapng 0.004074096 Yes

(WiFi)

No
(WLAN)

No No

(GW)

No ARP response time is Layer 2

latency between the Client

(WLAN) NIC and default GW

#sf25us

STEP4 Compare another trace file

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 27

• How about DNS response, check dns.time of

both trace files and write out

Both traces use the

same DNS server

8.8.8.8, so the network

environment mainly

causes the difference

Trace file dns.time

(seconds)

network Client

OS

Client

App

Server

OS

Server

App

Meaning

http.pcapng 0.060077000 Yes No No Yes Yes DNS latency + network

http2.pcapng 0.320323000 Yes No No Yes Yes DNS latency + network

#sf25us

STEP4 Compare another trace file

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 28

• Next, compare HTTP response time, check

http.time of both trace files and write out

www.kantei.go.jp

responds just one

302 Found response.

fuji-fc.fuji-soko.net

responds 200 OK,

full contents of

body(text/html) by 8

Reassembled TCP

segments (8xRTT)

http2.pcapng

contains

10037 tcp

bytes in flight

http://www.kantei.go.jp/
http://fuji-fc.fuji-soko.net/
http://fuji-fc.fuji-soko.net/
http://fuji-fc.fuji-soko.net/
http://fuji-fc.fuji-soko.net/
http://fuji-fc.fuji-soko.net/

#sf25us

STEP4 Compare another trace file

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 29

• Compare both HTTP response time,

• A wired trace is about 23 times faster than a

wireless one. A wired connection contains just one

turn TCP segment, with a 97-byte payload. In

contrast, a wireless connection contains eight TCP

segments, with 10,037 bytes of data.

Trace file http.time

(seconds)

network Client

OS

Client

App

Server

OS

Server

App

Meaning

http.pcapng
www.kantei.go.jp

0.071914000 Yes No No Yes Yes HTTP latency + network

302 found by 1 segment.

http2.pcapng
fuji-fc.fuji-soko.net

1.655489000 Yes No No Yes Yes HTTP latency + network

200 OK by 8 segments

#sf25us

Interval of TCP segments http.pcapng

Wired

network Client
OS

Client
App

Server
OS

Server
App

Meaning

SYN<>SYN/ACK 0.136737 Yes No No Yes No Server OS initial socket processing time

+ network

SYN/ACK<>ACK 0.000166 No Yes No No No Client OS socket processing time

ACK<>1st segment

(PHS/ACK)
0.000308 No No Yes No No Client App (browser) request creation time

1st segment(PSH/ACK)

<>2nd segment(PSH/ACK)
0.071914 Yes No No Yes Yes ServerOS socket processing time +

ServerApp(web server) response creation

time (304 Found) + network

STEP4 Compare another trace file

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 30

• Then compare TCP latency

• Change Time Display

Format, Name Resolution,

Statistics>Flow Graph to

create TCP flow graph

#sf25us

Interval of TCP segments http2.pcapng

Wireless

network Client
OS

Client
App

Server
OS

Server
App

Meaning

SYN<>SYN/ACK 0.082670 Yes No No Yes No Server OS initial socket processing time

+ network

SYN/ACK<>ACK 0.001984 No Yes No No No Client OS socket processing time

ACK<>1st segment

(PHS/ACK)
0.000893 No No Yes No No Client App (browser) request creation time

1st segment(PSH/ACK)

<>ACK
0.089877 Yes No No Yes No ServerOS socket processing time + network

(No ServerApp in this trace)

STEP4 Compare another trace file

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 31

• In http2.pcapng, the server

sends back just an ACK

after the HTTP request

• There are 8 TCP segment

in HTTP response later

#sf25us

Interval of TCP segments http.pcapng

Wired

http2.pcapn

g
Wireless

network Client
OS

Client
App

Server
OS

Server
App

Meaning

SYN<>SYN/ACK 0.136737 0.082670 Yes No No Yes No Server OS initial socket processing

time + network

SYN/ACK<>ACK 0.000166 0.001984 No Yes No No No Client OS socket processing time

ACK<>1st segment

(PHS/ACK)
0.000308 0.000893 No No Yes No No Client App (browser) request

creation time

http.pcapng

1st segment(PSH/ACK)
<>2nd segment(PSH/ACK)
http2.pcapng

1st segment(PSH/ACK)
<>ACK

0.071914 0.089877 Yes No No Yes wired

No
wireless

Yes

http.pcapng: ServerOS socket

processing time +ServerApp(web

server) response creation + network

http2.pcapng: ServerOS socket

processing time + network

STEP4 Compare another trace file

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 32

• Then, try dividing the TCP delays of both traces

• Pick up each latency in the TCP connection in both

trace files and write out the table.

#sf25us

Interval of TCP

segments

http.pcapng

Wired

http2.pcapng

Wireless

network Client
OS

Client
App

Server
OS

Server
App

Meaning

SYN<>SYN/ACK 0.136737 0.082670 Yes No No Yes No Server OS initial socket processing

time + network

SYN/ACK<>ACK 0.000166 0.001984 No Yes No No No Client OS socket processing time

ACK<>1st

segment
0.000308 0.000893 No No Yes No No Client App (browser) request

creation time

http.pcapng

1st segment(PSH/ACK)

<>2nd segment(PSH/ACK)

http2.pcapng

1st segment(PSH/ACK)

<>ACK

0.071914 0.089877 Yes No No Yes wired

Yes
wireless

No

http.pcapng

Server OS socket processing time

+ Server App response + network
http2.pcapng

Or Server OS socket processing

time + network

STEP4 Compare another trace file

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 33

www.kantei.go.jp (Wired) SYN<>SYN/ACK interval time

takes more time than fuji-fc.fuji-soko.net (Wireless)

The Prime Minister’s office website may use CDN

(Contents Delivery Network) So it takes the biggest.

#sf25us

STEP4 Compare another trace file

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 34

• Compare each latency in both trace files.

• We can find another aspect of the latencies.

Field name

Interval of TCP
segments

http.pcapng

www.kantei.go.jp
Wired network

http2.pcapng

fuji-fc.fuji-
soko.net WiFi

network Client

OS

Client

App

Server

OS

Server

App

Meaning

arp_latency.time 0.000411033 0.004074096 Yes
(LAN)

No
(NIC)

No No
(GW)

No Layer 2 latency between

Client NIC and defaultGW

dns.time 0.060077000 0.320323000 Yes No No Yes Yes DNS latency + network

SYN<>SYN/ACK 0.136737 0.082670 Yes No No Yes No Server OS initial socket

processing time + network

SYN/ACK<>ACK 0.000166 0.001984 No Yes No No No Client OS socket

processing time

ACK<>1st

segment
0.000308 0.000893 No No Yes No No Client App (browser)

request creation time

http.pcapng

1st segment <>
2nd segment(PSH/ACK)

http2.pcapng

1st segment(PSH/ACK)
<>ACK

0.071914 0.089877 Yes No No Yes
http.pcapng

Yes
http2.pcapng

No

http.pcapng

Server OS socket processing time +

Server App response + network
http2.pcapng

Or Server OS socket processing

time + network

http.time 0.071914000 1.655489000 Yes No No Yes Yes HTTP latency + network

#sf25us

STEP5 Compare different point of capturing

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 35

• We may encounter a stuck when we capture

at just one location for troubleshooting.

• Packet-based troubleshooting is a black box test;

we need to find the cause from the outside traces.

• This time we use simple ftp connection trace files,

“clientside.pcapng” and “serverside.pcapng”

• Compare different point traces of the same traffic.

ClientIP(10.211.55.4), ServerIP(192.168.43.134)

The client is Windows 11 on a Parallels Desktop,

and the server is macOS 15.5, on a MacBook.

#sf25us

STEP5 Compare different point of capturing

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 36

Client

10.211.55.4

Server

192.168.43.134ping

ftp

• We use a virtual LAN network environment on one

PC. So there is no router. IP TTL, IPID, IP header

checksum and client TCP port are not changed in

both sides trace, though the capture location is

different

Switching

VLAN

#sf25us

STEP5 Compare different point of capturing

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 37

• Let’s start with Layer2, check #2 ARP packets

Client-side trace contains

layer two network latency

Server-side trace only

contains ARP processing.

So, layer two network latency is

0.000351190567016602 - 0.000216007232666016 = 0.00013518

small values in a virtual network

Trace file arp_latency.time

(seconds)

network Client

OS

Client

App

Server

OS

Server

App

Meaning

clientside.pcapng 0.0003511905

67016602

Yes No No No No ARP between Client NIC and

default GW includes network

serverside.pcapng 0.0002160072

32666016

No No No No No Server NIC’s arp processing

time without network

#sf25us

STEP5 Compare different point of capturing

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 38

• Next Layer3, check #4 ICMP packet of both side.

icmp.resptime is Wireshark

Generated field to calculate

the ICMP response time

Client-side trace contains

Round Trip Time

Client

10.211.55.4

Server

192.168.43.134

ping

icmp.resptime

Switching

VLAN

#sf25us

STEP5 Compare different point of capturing

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 39

• Compare both sides of the ICMP latency

Check icmp.resptime and

Calculate network latency as

1.531 – 1.332 = 0.199ms

(so small latency because of

virtual environments)

Trace file icmp.resptime

(seconds)

network Client

OS

Client

App

Server

OS

Server

App

Meaning

clientside.pcapng 0.001531 Yes No No Yes No RTT + Server OS processing

serverside.pcapng 0.001332 No No No Yes No Server OS IP stack receives

ICMP then create echo reply

and send back to the Client.

#sf25us

STEP5 Compare different point of capturing

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 40

• Then look for TCP connection latency. Change

Time Display Format and Create TCP Flow Graph

Interval of TCP segments clientside network Client
OS

Client
App

Server
OS

Server
App

Meaning

SYN<>SYN/ACK 0.001004 Yes No No Yes No Server OS initial socket processing time +

network

SYN/ACK<>ACK 0.000046 No Yes No No No Client OS (Win11) socket processing time

ACK<>1stsegment(PSH/ACK

Len:25)(from Server with banner)
0.000359 Yes No No Yes Yes Server OS processes the socket, and

ServerApp create banner, then serverOS

send PSH/ACK tcp segment via network

1stsegment(PSH/ACK Len:25) <>

2nd segment(PSH/ACK Len:14)
0.002504

worst!!

No Yes Yes No No Client OS processes the socket, and

ClientApp create the FTP command, then

Client OS create PSH/ACK tcp segment

In clientside.pcapng, Server sends

banner with PSH/ACK segment

after handshake, so ClientApp is

the main cause of the latency

#sf25us

STEP5 Compare different point of capturing

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 41

• Create the tables for both client-side/server-side.

Interval of TCP segments serverside network Client
OS

Client
App

Server
OS

Server
App

Meaning

SYN<>SYN/ACK 0.000864 No No No Yes No Server OS initial socket processing time

SYN/ACK<>ACK 0.000142 Yes Yes No No No Client OS (Win11) socket processing time +

network (in this case, so small latency)

ACK<>1stsegment(PSH/ACK)

(from Server with banner)
0.000245 No No No Yes Yes Server OS processes the socket, and

ServerApp create a banner, then ServerOS

send PSH/ACK tcp segment via network

1stsegment(PSH/ACK) <>

2nd segment(PSH/ACK)
0.002635

worst

Yes Yes Yes No No Client OS processes the socket, and

ClientApp create the FTP command, then

Client OS create and sends PSH/ACK tcp

segment via the network

In serverside.pcapng, Server sends

PUSH/ACK TCP segment contains

FTP server banner message after

3-way handshake (0.000245sec)

#sf25us

STEP5 Compare different point of capturing

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 42

Interval of TCP segments serverside network Client
OS

Client
App

Server
OS

Server
App

Meaning

SYN<>SYN/ACK 0.000864 No No No Yes No Server OS initial socket processing time

SYN/ACK<>ACK 0.000142 Yes Yes No No No Client OS (Win11) socket processing time +

network (in this case, so small latency)

ACK<>1stsegment(PSH/ACK)

(from Server with banner)
0.000245 No No No Yes Yes Server OS processes the socket, and

ServerApp create a banner, then ServerOS

send PSH/ACK tcp segment via network

1stsegment(PSH/ACK) <>

2nd segment(PSH/ACK)
0.002635

worst

Yes Yes Yes No No Client OS processes the socket, and

ClientApp create the FTP command, then

Client OS create and sends PSH/ACK tcp

segment via the network

Interval of TCP segments clientside network Client
OS

Client
App

Server
OS

Server
App

Meaning

SYN<>SYN/ACK 0.001004 Yes No No Yes No Server OS initial socket processing time +

network

SYN/ACK<>ACK 0.000046 No Yes No No No Client OS (Win11) socket processing time

ACK<>1stsegment(PSH/ACK)

(from Server with banner)
0.000359 Yes No No Yes Yes Server OS processes the socket, and

ServerApp create banner, then serverOS

send PSH/ACK tcp segment via network

1stsegment(PSH/ACK) <>

2nd segment(PSH/ACK)
0.002504

worst!!

No Yes Yes No No Client OS processes the socket, and

ClientApp create the FTP command, then

Client OS create PSH/ACK tcp segment

#sf25us

STEP5 Compare different point of capturing

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 43

• The root cause of latency is ClientApp, FTP Client,

not Network!! Tell this to the development team!!

Cause of latency Calculation Latency (seconds)

Client App (FTP

Client)+ClientOS

In clientside.pcapng, 1stsegment(PSH/ACK) <> 2nd segment(PSH/ACK)

0.002504 seconds (including few ClientOS processing time) 0.002504
Client OS

(Windows11)

In clientside.pcapng,

SYN/ACK<>ACK interval 0.000046 seconds 0.000046
Network

(Virtual network)

In serverside.pcapng, 1stsegment(PSH/ACK) <> 2nd segment(PSH/ACK)

0.002635 seconds minus In clientside.pcapng, 1stsegment(PSH/ACK)

<> 2nd segment(PSH/ACK) 0.002504 seconds = 0.000131 seconds

0.000131
(Virtual network)

Server OS

(macos15.5)

In serverside.pcapng

SYN<>SYN/ACK interval 0.000864 seconds 0.000864
Server App

(FTP Server)

In serverside.pcapng, ACK<>1stsegment(PSH/ACK) 0.000245 seconds

(including few ServerOS processing time) 0.000245

• Pick up the latency values from both traces.

#sf25us

Summary Chase the latency

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 44

• Collect each layer’s latency

• Layer 2: Arp response time (arp_latency.time)

• Layer 3: Network RTT (icmp.resptime)

• Layer 4: Use Wireshark Generated fields such as

tcp.analysis.initial_rtt, tcp.analysis.ack_rtt

Create a TCP flow graph of each segment interval.

Then think the meaning of each latencies

• Layer 5-7: Use Wireshark Generated fields such as

http.time, dns.time, smb2.time, nbns.time,

radius.time, dcerpc.time, and so on.

#sf25us

Summary Chase the latency

sample traces and configurations are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip 45

• Write out each latency into the table,

Consider the meanings of each duration.

Then assign each latency to

ClientApp, ClientOS, NW, ServerOS and ServerApp

• If you're stuck with the problems, we need to

collect more information. Compare another trace

with different settings, client/server and network.

• Comparing both client-side and server-side traces

in the same connection is very useful in TCP

latency analysis.

#sf25us

USE WIRESHARK
Thank you for watching.

Please complete the survey and send feedback

https://conference.wireshark.org/sharkfest-25-us-2024/talk/UPKZY8/feedback

Sample trace files and Wireshark profiles are

https://www.ikeriri.ne.jp/sharkfest/ikeriri25.zip

46

https://conference.wireshark.org/sharkfest-25-us-2024/talk/UPKZY8/feedback
https://conference.wireshark.org/sharkfest-25-us-2024/talk/UPKZY8/feedback
https://conference.wireshark.org/sharkfest-25-us-2024/talk/UPKZY8/feedback
https://conference.wireshark.org/sharkfest-25-us-2024/talk/UPKZY8/feedback
https://conference.wireshark.org/sharkfest-25-us-2024/talk/UPKZY8/feedback
https://conference.wireshark.org/sharkfest-25-us-2024/talk/UPKZY8/feedback
https://conference.wireshark.org/sharkfest-25-us-2024/talk/UPKZY8/feedback

	Slide 1: Chase the latency look for the root cause of the latency problems
	Slide 2: Megumi Takeshita, Packet Otaku, ikeriri network service
	Slide 3: Session Overview
	Slide 4: STEP1 Wireshark generated fields calculate the latency
	Slide 5: STEP1 Wireshark generated fields calculate the latency
	Slide 6: STEP1 Wireshark generated fields calculate the latency
	Slide 7: STEP1 Wireshark generated fields calculate the latency
	Slide 8: STEP1 Wireshark generated fields calculate the latency
	Slide 9: STEP1 Wireshark generated fields calculate the latency
	Slide 10: STEP1 Wireshark generated fields calculate the latency
	Slide 11: STEP2 Extend Wireshark fields by Post Dissector
	Slide 12: STEP2 Extend Wireshark fields by Post Dissector
	Slide 13: STEP2 Extend Wireshark fields by Post Dissector
	Slide 14: STEP2 Extend Wireshark fields by Post Dissector
	Slide 15: STEP2 Extend Wireshark fields by Post Dissector
	Slide 16: STEP2 Extend Wireshark fields by Post Dissector
	Slide 17: STEP2 Extend Wireshark fields by Post Dissector
	Slide 18: STEP2 Extend Wireshark fields by Post Dissector
	Slide 19: STEP2 Extend Wireshark fields by Post Dissector
	Slide 20: STEP3 Dividing TCP connection‘s latency at the client side
	Slide 21: STEP3 Dividing TCP connection‘s latency at the client side
	Slide 22: STEP3 Dividing TCP connection‘s latency at the client side
	Slide 23: STEP1-3 Write up all delay into one table
	Slide 24: STEP4 Compare another trace file
	Slide 25: STEP4 Compare another trace file
	Slide 26: STEP4 Compare another trace file
	Slide 27: STEP4 Compare another trace file
	Slide 28: STEP4 Compare another trace file
	Slide 29: STEP4 Compare another trace file
	Slide 30: STEP4 Compare another trace file
	Slide 31: STEP4 Compare another trace file
	Slide 32: STEP4 Compare another trace file
	Slide 33: STEP4 Compare another trace file
	Slide 34: STEP4 Compare another trace file
	Slide 35: STEP5 Compare different point of capturing
	Slide 36: STEP5 Compare different point of capturing
	Slide 37: STEP5 Compare different point of capturing
	Slide 38: STEP5 Compare different point of capturing
	Slide 39: STEP5 Compare different point of capturing
	Slide 40: STEP5 Compare different point of capturing
	Slide 41: STEP5 Compare different point of capturing
	Slide 42: STEP5 Compare different point of capturing
	Slide 43: STEP5 Compare different point of capturing
	Slide 44: Summary Chase the latency
	Slide 45: Summary Chase the latency
	Slide 46: USE WIRESHARK

